TVSLAM: An Efficient Topological-Vector Based SLAM Algorithm for Home Cleaning Robots | SpringerLink
Skip to main content

TVSLAM: An Efficient Topological-Vector Based SLAM Algorithm for Home Cleaning Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10464))

Included in the following conference series:

  • 5147 Accesses

Abstract

The Simultaneous Localization and Mapping problem limits the promotion of home cleaning robots in practical domestic environments. In this paper, a novel topological-vector based simultaneous localization and mapping (TVSLAM) algorithm is proposed to solve the problem. The algorithm involves four aspects. First, the ultra-wideband localization and dead reckoning localization are selected to develop a new combined localization algorithm which can improve the localization accuracy. In addition, a data acquisition algorithm which simplifies the process of data collection and demands much smaller memory size is proposed. Furthermore, a partitioning algorithm is developed to adapt to the various change rates of different rooms. Finally, an autonomous learning algorithm based on the regular and repetitive cleaning task is put forward. It makes the constructed map approach to the real environment with the increase of cleaning times. Overall, a novel topological-vector map is generated according to the above process of the algorithm. Simulation results show that the TVSLAM is an efficient and robust localization and mapping algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, T.-K., Baek, S., Oh, S.-Y.: Sector-based maximal online coverage of unknown environments for cleaning robots with limited sensing. Robot. Autonom. Syst. 59(10), 698–710 (2011)

    Article  Google Scholar 

  2. Sohn, H.J., Kim, B.K.: VecSLAM: an efficient vector-based SLAM algorithm for indoor environments. J. Intell. Rob. Syst. 56(3), 301–318 (2009)

    Article  MATH  Google Scholar 

  3. Kang, J.-G., Kim, S., An, S.-Y., Oh, S.-Y.: A new approach to simultaneous localization and map building with implicit model learning using neuro evolutionary optimization. Appl. Intell. 36(1), 242–269 (2012)

    Article  Google Scholar 

  4. Biswas, J., Veloso, M.: WiFi localization and navigation for autonomous indoor mobile robots. In: IEEE International Conference on Robotics and Automation, pp. 4379–4384 (2010)

    Google Scholar 

  5. Gutmann, J.S., Eade, E., Fong, P., Munich, M.E.: Vector field SLAM—Localization by learning the spatial variation of continuous signals. IEEE Trans. Rob. 28(3), 650–667 (2012)

    Article  Google Scholar 

  6. Segura, M., Mut, V., Sisterna, C.: Ultra wideband indoor navigation system. Iet Radar Sonar Navig. 6(5), 402–411 (2012)

    Article  Google Scholar 

  7. Cho, B.-S., Moon, W.-S., Seo, W.-J., Baek, K.-R.: A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding. J. Mech. Sci. Technol. 25(11), 2907–2917 (2011)

    Article  Google Scholar 

  8. Mautz, R.: Indoor Positioning Technologies. Südwestdeutscher Verlag für Hochschulschriften (2012)

    Google Scholar 

  9. Jelinek, A.: Vector maps in mobile robotics. Acta Polytech. CTU Proc. 2(2), 22–28 (2015)

    Article  Google Scholar 

  10. Gonzalez, E., Alvarez, O., Diaz, Y., Parra, C., Bustacara, C.: BSA: a complete coverage algorithm. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA), pp. 2040–2044 (2005)

    Google Scholar 

  11. Choi, Y.H., Lee, T.K., Baek, S.H., Oh, S.Y.: Online complete coverage path planning for mobile robots based on linked spiral paths using constrained inverse distance transform. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5788–5793 (2009)

    Google Scholar 

  12. Lee, T.-K., Baek, S.-H., Choi, Y.-H., Oh, S.-Y.: Smooth coverage path planning and control of mobile robots based on high-resolution grid map representation. Robot. Autonom. Syst. 59(10), 801–812 (2011)

    Article  Google Scholar 

  13. Pfister, S.T., Roumeliotis, S.I., Burdick, J.W.: Weighted line fitting algorithms for mobile robot map building and efficient data representation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1304–1311 (2003)

    Google Scholar 

  14. An, S.-Y., Kang, J.-G., Lee, L.-K., Oh, S.-Y.: SLAM with salient line feature extraction in indoor environments. In: International Conference on Control Automation Robotics and Vision, pp. 410–416 (2010)

    Google Scholar 

  15. An, S.-Y., Kang, J.-G., Lee, L.-K., Oh, S.-Y.: Line segment-based indoor mapping with salient line feature extraction. Adv. Robot. 26(5–6), 437–460 (2012)

    Article  Google Scholar 

  16. Lee, S., Lee, S., Baek, S.: Vision-based kidnap recovery with SLAM for home cleaning robots. J. Intell. Rob. Syst. 67(1), 7–24 (2011)

    Article  Google Scholar 

  17. Jung, J., Lee, S.M., Myung, H.: Indoor mobile robot localization and mapping based on ambient magnetic fields and aiding radio sources. IEEE Trans. Instrum. Meas. 64(7), 1922–1934 (2015)

    Article  Google Scholar 

  18. Lee, S.M., Jung, J., Kim, S., Kim, I.J., Myung, H.: DV-SLAM (Dual-sensor-based Vector-field SLAM) and observability analysis. IEEE Trans. Industr. Electron. 62(2), 1101–1112 (2015)

    Article  Google Scholar 

  19. Choi, Y.-H., Lee, T.-K., Oh, S.-Y.: A line feature based SLAM with low grade range sensors using geometric constraints and active exploration for mobile robot. Autonom. Robots 24(1), 13–27 (2008)

    Article  Google Scholar 

  20. Baizid, K., Lozenguez, G., Fabresse, L., Bouraqadi, N.: Vector maps: a lightweight and accurate map format for multi-robot systems. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds.) ICIRA 2016. LNCS, vol. 9834, pp. 418–429. Springer, Cham (2016). doi:10.1007/978-3-319-43506-0_37

    Chapter  Google Scholar 

  21. Sohn, H.J., Kim, B.K.: An efficient localization algorithm based on vector matching for mobile robots using laser range finders. J. Intell. Rob. Syst. 51(4), 461–488 (2008)

    Article  Google Scholar 

  22. Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artif. Intell. 99(1), 21–71 (1998)

    Article  MATH  Google Scholar 

  23. Abrate, F., Bona, B., Indri, M.: Experimental EKF-based SLAM for Mini-rovers with IR Sensors Only. In: EMCR (2007)

    Google Scholar 

  24. Dugarjav, B., Lee, S.-G., Kim, D., Kim, J.H., Chong, N.Y.: Scan matching online cell decomposition for coverage path planning in an unknown environment. Int. J. Precis. Eng. Manufact. 14(9), 1551–1558 (2013)

    Article  Google Scholar 

  25. Baek, S., Lee, T.-K., Se-Young, O.H., Ju, K.: Integrated on-line localization, mapping and coverage algorithm of unknown environments for robotic vacuum cleaners based on minimal sensing. Adv. Robot. 25(13–14), 1651–1673 (2012)

    Google Scholar 

  26. Myung, H., Jeon, H.-M., Jeong, W.-Y.: Virtual door algorithm for coverage path planning of mobile robot. In: IEEE International Symposium on Industrial Electronics (ISIE), pp. 658–663 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, Y., Qu, C., Wang, Q., Jin, Z., Shen, M., Shen, J. (2017). TVSLAM: An Efficient Topological-Vector Based SLAM Algorithm for Home Cleaning Robots. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65298-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65297-9

  • Online ISBN: 978-3-319-65298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics