Abstract
Attitude prediction strives to determine whether an opinion holder is positive or negative towards a given target. We cast this problem as a lexicon engineering task in the context of deep linguistic grammar formalisms such as LFG or HPSG. Moreover, we demonstrate that attitude prediction can be accomplished solely through unification of lexical feature structures. It is thus possible to use our model without altering existing grammars, only the lexicon needs to be adapted. In this paper, we also show how our model can be combined with dependency parsers. This makes our model independent of the availability of deep grammars, only unification as a processing mean is needed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An up arrow inserts a feature into the feature structure defined by the equation.
- 2.
Available from https://pub.cl.uzh.ch/projects/opinion/lrec_data.txt.
- 3.
We also use the parser in [10].
References
Butt, M., King, T.H., Masuichi, H., Rohrer, C.: The parallel grammar project. In: Carroll, N.J., Sutcliffe, R. (eds.) Proceedings of the Workshop on Grammar Engineering and Evaluation, COLING 2002, pp. 1–7 (2002)
Deng, L., Wiebe, J.: Joint prediction for entity/event-level sentiment analysis using probabilistic soft logic models. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), Lisbon, Portugal, pp. 179–189 (2015)
Kaplan, R.M., Bresnan, J.: Lexical-functional grammar: a formal system for grammatical representation. In: The Mental Representation of Grammatical Relations. The MIT Press, Cambridge (1982)
Kaplan, R.M., King, T.H., Maxwell III, J.T.: Adapting existing grammars: the XLE approach. In: Carroll, N.J., Sutcliffe, R. (eds.) Proceedings of the Workshop on Grammar Engineering and Evaluation, COLING 2002, pp. 29–35 (2002)
Karttunen, L.: Simple and phrasal implicatives. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics, pp. 124–131. Association for Computational Linguistics, Stroudsburg (2012)
Klenner, M., Amsler, M.: Sentiframes: a resource for verb-centered German sentiment inference. In: Calzolari, N., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC), Portoro, Slovenia, pp. 2888–2891 (2016)
Klenner, M., Clematide, S.: How factuality determines sentiment inferences. In: Gardent, C., Raffaella Bernardi, I.T. (eds.) Proceedings of *SEM 2016: The Fifth Joint Conference on Lexical and Computational Semantics, Berlin, Germany, pp. 75–84, August 2016
Rashkin, H., Singh, S., Choi, Y.: Connotation frames: a data-driven investigation. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL), Berlin, Germany, pp. 311–32, August 2016
Saurí, R., Pustejovsky, J.: FactBank: a corpus annotated with event factuality. Lang. Resour. Eval. 43(3), 227–268 (2009)
Sennrich, R., Schneider, G., Volk, M., Warin, M.: A new hybrid dependency parser for German. In: Proceedings of the German Society for Computational Linguistics and Language Technology (GSCL), Potsdam, Germany, pp. 115–124 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Klenner, M. (2017). An Unification-Based Model for Attitude Prediction. In: Ekštein, K., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2017. Lecture Notes in Computer Science(), vol 10415. Springer, Cham. https://doi.org/10.1007/978-3-319-64206-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-64206-2_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64205-5
Online ISBN: 978-3-319-64206-2
eBook Packages: Computer ScienceComputer Science (R0)