Animal and Robotic Locomotion on Wet Granular Media | SpringerLink
Skip to main content

Animal and Robotic Locomotion on Wet Granular Media

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

Most of the terrestrial environments are covered with some type of flowing ground; however, inadequate understanding of moving bodies interacting with complex granular substrates has hindered the development of terrestrial/all-terrain robots. Although there has been recent performance of experimental and computational studies of dry granular media, wet granular media remain largely unexplored. In particular, this encompasses animal locomotion analysis, robotic system performance, and the physics of granular media at different saturation levels. Given that the presence of liquid in granular media alters its properties significantly, it is advantageous to evaluate the locomotion of animals inhabiting semi-aquatic and tropical environments to learn more about effective locomotion strategies on such terrains. Lizards are versatile and highly agile animals. Therefore, this study evaluated the brown basilisk, which is a lizard species from such habitats that are known for their performance on wet granular media. An extensive locomotion study was performed on this species. The animal experiments showed that on higher saturation levels, velocity of the animal was increased due to an increase in the stride length. A basilisk-inspired robot was then developed to further study the locomotion on wet granular media and it was observed that the robot can also achieve higher velocities at increased saturation levels. This work can pave the way for developing robotic systems which can explore complex environments for scientific discovery, planetary exploration, or search-and-rescue missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy, R.R., Tadokoro, S., Kleiner, A.: Disaster Robotics. Springer Handbook of Robotics. Springer, Cham (2016)

    Google Scholar 

  2. Aguilar, J., Zhang, T., Qian, F., Kingsbury, M., McInroe, B., Mazouchova, N., Li, C., Maladen, R., Gong, C., Travers, M., et al.: A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Rep. Prog. Phys. 79(11), 110001 (2016)

    Article  Google Scholar 

  3. Mazouchova, N., Gravish, N., Savu, A., Goldman, D.I.: Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles. Biol. Lett. 6(3), 398–401 (2010)

    Article  Google Scholar 

  4. Sharpe, S.S., Kuckuk, R., Goldman, D.I.: Controlled preparation of wet granular media reveals limits to lizard burial ability. Phys. Biol. 12(4), 046009 (2015)

    Article  Google Scholar 

  5. Richefeu, V., El Youssoufi, M.S., Azéma, E., Radjai, F.: Force transmission in dry and wet granular media. Powder Technol. 190(1), 258–263 (2009)

    Article  Google Scholar 

  6. Li, C., Zhang, T., Goldman, D.I.: A terradynamics of legged locomotion on granular media. Science 339(6126), 1408–1412 (2013)

    Article  Google Scholar 

  7. Reina, G., Ojeda, L., Milella, A., Borenstein, J.: Wheel slippage and sinkage detection for planetary rovers. IEEE/ASME Trans. Mech. 11(2), 185–195 (2006)

    Article  Google Scholar 

  8. Ghotbi, B., González, F., Kövecses, J., Angeles, J.: Mobility evaluation of wheeled robots on soft terrain: effect of internal force distribution. Mech. Mach. Theor. 100, 259–282 (2016)

    Article  Google Scholar 

  9. Zhou, F., Arvidson, R.E., Bennett, K., Trease, B., Lindemann, R., Bellutta, P., Iagnemma, K., Senatore, C.: Simulations of Mars rover traverses. J. Field Robot. 31(1), 141–160 (2014)

    Article  Google Scholar 

  10. Heverly, M., Matthews, J., Lin, J., Fuller, D., Maimone, M., Biesiadecki, J., Leichty, J.: Traverse performance characterization for the mars science laboratory rover. J. Field Robot. 30(6), 835–846 (2013)

    Article  Google Scholar 

  11. Li, C.: Biological, robotic, and physics studies to discover principles of legged locomotion on granular media. Georgia Institute of Technology (2011)

    Google Scholar 

  12. Maladen, R.D., Ding, Y., Li, C., Goldman, D.I.: Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Science 325(5938), 314–318 (2009)

    Article  Google Scholar 

  13. Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R.L., Mendelson, J.R., Choset, H., Hu, D.L., Goldman, D.I.: Sidewinding with minimal slip: snake and robot ascent of sandy slopes. Science 346(6206), 224–229 (2014)

    Article  Google Scholar 

  14. Goldman, D.I., Umbanhowar, P.: Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77(2), 021308 (2008)

    Article  MathSciNet  Google Scholar 

  15. Gravish, N., Franklin, S.V., Hu, D.L., Goldman, D.I.: Entangled granular media. Phys. Rev. Lett. 108(20), 208001 (2012)

    Article  Google Scholar 

  16. Hubicki, C.M., et al.: Tractable terrain-aware motion planning on granular media: an impulsive jumping study. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2016)

    Google Scholar 

  17. Brzinski, T., Mayor, P., Durian, D.: Depth-dependent resistance of granular media to vertical penetration. Phys. Rev. Lett. 111(16), 168002 (2013)

    Article  Google Scholar 

  18. Katsuragi, H., Durian, D.J.: Unified force law for granular impact cratering. Nat. Phys. 3(6), 420–423 (2007)

    Article  Google Scholar 

  19. Li, C., Umbanhowar, P.B., Komsuoglu, H., Koditschek, D.E., Goldman, D.I.: Sensitive dependence of the motion of a legged robot on granular media. Proc. Natl. Acad. Sci. 106(9), 3029–3034 (2009)

    Article  Google Scholar 

  20. Li, C., Umbanhowar, P.B., Komsuoglu, H., Goldman, D.I.: The effect of limb kinematics on the speed of a legged robot on granular media. Exp. Mech. 50(9), 1383–1393 (2010)

    Article  Google Scholar 

  21. Maladen, R.D., Ding, Y., Umbanhowar, P.B., Kamor, A., Goldman, D.I.: Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J. Roy. Soc. Interface 8(62), 1332–1345 (2011)

    Article  Google Scholar 

  22. Mcinroe, B., Goldman, D.: Construction of a mudskipper-inspired robot to study crutching locomotion on flowable ground. Integr. Comp. Biol. 54, E316–E316 (2014)

    Google Scholar 

  23. Lejeune, T.M., Willems, P.A., Heglund, N.C.: Mechanics and energetics of human locomotion on sand. J. Exp. Biol. 201(13), 2071–2080 (1998)

    Google Scholar 

  24. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: BigDog, the rough-terrain quadruped robot. In: Proceedings of the 17th World Congress, pp. 10822–10825 (2008)

    Google Scholar 

  25. Asif, U., Iqbal, J.: On the improvement of multi-legged locomotion over difficult terrains using a balance stabilization method. Int. J. Adv. Robot. Syst. 9(1) (2012). doi:10.5772/7789

  26. Ren, X., Liang, X., Kong, Z., Xu, M., Xu, R., Zhang, S.: An experimental study on the locomotion performance of elliptic-curve leg in muddy terrain. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 518–523 (2013)

    Google Scholar 

  27. Xu, L., Liang, X., Xu, M., Liu, B., Zhang, S.: Interplay of theory and experiment in analysis of the advantage of the novel semi-elliptical leg moving on loose soil. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 26–31 (2013)

    Google Scholar 

  28. Klein, M., Boxerbaum, A.S., Quinn, R.D., Harkins, R., Vaidyanathan, R.: SeaDog: a rugged mobile robot for surf-zone applications. In: Proceedings of 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1335–1340 (2012)

    Google Scholar 

  29. Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55(1–2), 1–45 (2006)

    Article  Google Scholar 

  30. Tegzes, P., Vicsek, T., Schiffer, P.: Avalanche dynamics in wet granular materials. Phys. Rev. Lett. 89(9), 094301 (2002)

    Article  Google Scholar 

  31. Albert, R., Albert, I., Hornbaker, D., Schiffer, P., Barabási, A.L.: Maximum angle of stability in wet and dry spherical granular media. Phys. Rev. E 56(6), R6271 (1997)

    Article  Google Scholar 

  32. Richefeu, V., El Youssoufi, M.S., Radjai, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73(5), 051304 (2006)

    Article  Google Scholar 

  33. Cutkosky, M.R., Kim, S.: Design and fabrication of multi-material structures for bioinspired robots. Philos. Trans. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 367(1894), 1799–1813 (2009)

    Article  Google Scholar 

  34. Bhushan, B.: Biomimetics: lessons from nature-an overview (2009)

    Google Scholar 

  35. Tesch, M., Lipkin, K., Brown, I., Hatton, R., Peck, A., Rembisz, J., Choset, H.: Parameterized and scripted gaits for modular snake robots. Adv. Robot. 23(9), 1131–1158 (2009)

    Article  Google Scholar 

  36. Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)

    Article  Google Scholar 

  37. Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, C., Hsieh, S.T., Goldman, D.I.: Multi-functional foot use during running in the zebra-tailed lizard (callisaurus draconoides). J. Exp. Biol. 215(18), 3293–3308 (2012)

    Article  Google Scholar 

  39. Irschick, D.J., Jayne, B.C.: Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard callisaurus draconoides and uma scoparia. J. Exp. Biol. 201(2), 273–287 (1998)

    Google Scholar 

  40. Glasheen, J., McMahon, T.: Size-dependence of water-running ability in basilisk lizards (basiliscus basiliscus). J. Exp. Biol. 199(12), 2611–2618 (1996)

    Google Scholar 

  41. Hsieh, S.T.: Three-dimensional hindlimb kinematics of water running in the plumed basilisk lizard (basiliscus plumifrons). J. Exp. Biol. 206(23), 4363–4377 (2003)

    Article  Google Scholar 

  42. Irschick, D.J., Jayne, B.C.: Comparative three-dimensional kinematics of the hindlimb for high-speed bipedal and quadrupedal locomotion of lizards. J. Exp. Biol. 202(9), 1047–1065 (1999)

    Google Scholar 

  43. Hsieh, S.T., Lauder, G.V.: Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl. Acad. Sci. U.S.A. 101(48), 16784–16788 (2004)

    Article  Google Scholar 

  44. Bush, J.W., Hu, D.L.: Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339–369 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Snyder, R.C.: Bipedal locomotion of the lizard basiliscus basiliscus. Copeia 1949(2), 129–137 (1949)

    Article  Google Scholar 

  46. Aerts, P., Van Damme, R., D’Août, K., Van Hooydonck, B.: Bipedalism in lizards: whole-body modelling reveals a possible spandrel. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 358(1437), 1525–1533 (2003)

    Article  Google Scholar 

  47. Park, H.S., Sitti, M.: Compliant footpad design analysis for a bio-inspired quadruped amphibious robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 645–651. IEEE (2009)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank ASU Institutional Animal Care and Use Committee (IACUC) for animal husbandry (IACUC Protocol #: 16-1504R), Professor Dale DeNardo for greatly valuable suggestions on the choice of animal and animal experiments, Professor Heather Emady and Spandana Vajrala for fruitful discussions on studying wet granular media, Carolyn Harvey for her contributions to the setup development, Daniel Lee, Isaac Charcos, and John Millard for helping with animal data collection/analysis, and Arizona State University for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Marvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bagheri, H., Taduru, V., Panchal, S., White, S., Marvi, H. (2017). Animal and Robotic Locomotion on Wet Granular Media. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics