Abstract
Most of the terrestrial environments are covered with some type of flowing ground; however, inadequate understanding of moving bodies interacting with complex granular substrates has hindered the development of terrestrial/all-terrain robots. Although there has been recent performance of experimental and computational studies of dry granular media, wet granular media remain largely unexplored. In particular, this encompasses animal locomotion analysis, robotic system performance, and the physics of granular media at different saturation levels. Given that the presence of liquid in granular media alters its properties significantly, it is advantageous to evaluate the locomotion of animals inhabiting semi-aquatic and tropical environments to learn more about effective locomotion strategies on such terrains. Lizards are versatile and highly agile animals. Therefore, this study evaluated the brown basilisk, which is a lizard species from such habitats that are known for their performance on wet granular media. An extensive locomotion study was performed on this species. The animal experiments showed that on higher saturation levels, velocity of the animal was increased due to an increase in the stride length. A basilisk-inspired robot was then developed to further study the locomotion on wet granular media and it was observed that the robot can also achieve higher velocities at increased saturation levels. This work can pave the way for developing robotic systems which can explore complex environments for scientific discovery, planetary exploration, or search-and-rescue missions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Murphy, R.R., Tadokoro, S., Kleiner, A.: Disaster Robotics. Springer Handbook of Robotics. Springer, Cham (2016)
Aguilar, J., Zhang, T., Qian, F., Kingsbury, M., McInroe, B., Mazouchova, N., Li, C., Maladen, R., Gong, C., Travers, M., et al.: A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Rep. Prog. Phys. 79(11), 110001 (2016)
Mazouchova, N., Gravish, N., Savu, A., Goldman, D.I.: Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles. Biol. Lett. 6(3), 398–401 (2010)
Sharpe, S.S., Kuckuk, R., Goldman, D.I.: Controlled preparation of wet granular media reveals limits to lizard burial ability. Phys. Biol. 12(4), 046009 (2015)
Richefeu, V., El Youssoufi, M.S., Azéma, E., Radjai, F.: Force transmission in dry and wet granular media. Powder Technol. 190(1), 258–263 (2009)
Li, C., Zhang, T., Goldman, D.I.: A terradynamics of legged locomotion on granular media. Science 339(6126), 1408–1412 (2013)
Reina, G., Ojeda, L., Milella, A., Borenstein, J.: Wheel slippage and sinkage detection for planetary rovers. IEEE/ASME Trans. Mech. 11(2), 185–195 (2006)
Ghotbi, B., González, F., Kövecses, J., Angeles, J.: Mobility evaluation of wheeled robots on soft terrain: effect of internal force distribution. Mech. Mach. Theor. 100, 259–282 (2016)
Zhou, F., Arvidson, R.E., Bennett, K., Trease, B., Lindemann, R., Bellutta, P., Iagnemma, K., Senatore, C.: Simulations of Mars rover traverses. J. Field Robot. 31(1), 141–160 (2014)
Heverly, M., Matthews, J., Lin, J., Fuller, D., Maimone, M., Biesiadecki, J., Leichty, J.: Traverse performance characterization for the mars science laboratory rover. J. Field Robot. 30(6), 835–846 (2013)
Li, C.: Biological, robotic, and physics studies to discover principles of legged locomotion on granular media. Georgia Institute of Technology (2011)
Maladen, R.D., Ding, Y., Li, C., Goldman, D.I.: Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Science 325(5938), 314–318 (2009)
Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R.L., Mendelson, J.R., Choset, H., Hu, D.L., Goldman, D.I.: Sidewinding with minimal slip: snake and robot ascent of sandy slopes. Science 346(6206), 224–229 (2014)
Goldman, D.I., Umbanhowar, P.: Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77(2), 021308 (2008)
Gravish, N., Franklin, S.V., Hu, D.L., Goldman, D.I.: Entangled granular media. Phys. Rev. Lett. 108(20), 208001 (2012)
Hubicki, C.M., et al.: Tractable terrain-aware motion planning on granular media: an impulsive jumping study. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2016)
Brzinski, T., Mayor, P., Durian, D.: Depth-dependent resistance of granular media to vertical penetration. Phys. Rev. Lett. 111(16), 168002 (2013)
Katsuragi, H., Durian, D.J.: Unified force law for granular impact cratering. Nat. Phys. 3(6), 420–423 (2007)
Li, C., Umbanhowar, P.B., Komsuoglu, H., Koditschek, D.E., Goldman, D.I.: Sensitive dependence of the motion of a legged robot on granular media. Proc. Natl. Acad. Sci. 106(9), 3029–3034 (2009)
Li, C., Umbanhowar, P.B., Komsuoglu, H., Goldman, D.I.: The effect of limb kinematics on the speed of a legged robot on granular media. Exp. Mech. 50(9), 1383–1393 (2010)
Maladen, R.D., Ding, Y., Umbanhowar, P.B., Kamor, A., Goldman, D.I.: Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J. Roy. Soc. Interface 8(62), 1332–1345 (2011)
Mcinroe, B., Goldman, D.: Construction of a mudskipper-inspired robot to study crutching locomotion on flowable ground. Integr. Comp. Biol. 54, E316–E316 (2014)
Lejeune, T.M., Willems, P.A., Heglund, N.C.: Mechanics and energetics of human locomotion on sand. J. Exp. Biol. 201(13), 2071–2080 (1998)
Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: BigDog, the rough-terrain quadruped robot. In: Proceedings of the 17th World Congress, pp. 10822–10825 (2008)
Asif, U., Iqbal, J.: On the improvement of multi-legged locomotion over difficult terrains using a balance stabilization method. Int. J. Adv. Robot. Syst. 9(1) (2012). doi:10.5772/7789
Ren, X., Liang, X., Kong, Z., Xu, M., Xu, R., Zhang, S.: An experimental study on the locomotion performance of elliptic-curve leg in muddy terrain. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 518–523 (2013)
Xu, L., Liang, X., Xu, M., Liu, B., Zhang, S.: Interplay of theory and experiment in analysis of the advantage of the novel semi-elliptical leg moving on loose soil. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 26–31 (2013)
Klein, M., Boxerbaum, A.S., Quinn, R.D., Harkins, R., Vaidyanathan, R.: SeaDog: a rugged mobile robot for surf-zone applications. In: Proceedings of 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1335–1340 (2012)
Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55(1–2), 1–45 (2006)
Tegzes, P., Vicsek, T., Schiffer, P.: Avalanche dynamics in wet granular materials. Phys. Rev. Lett. 89(9), 094301 (2002)
Albert, R., Albert, I., Hornbaker, D., Schiffer, P., Barabási, A.L.: Maximum angle of stability in wet and dry spherical granular media. Phys. Rev. E 56(6), R6271 (1997)
Richefeu, V., El Youssoufi, M.S., Radjai, F.: Shear strength properties of wet granular materials. Phys. Rev. E 73(5), 051304 (2006)
Cutkosky, M.R., Kim, S.: Design and fabrication of multi-material structures for bioinspired robots. Philos. Trans. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 367(1894), 1799–1813 (2009)
Bhushan, B.: Biomimetics: lessons from nature-an overview (2009)
Tesch, M., Lipkin, K., Brown, I., Hatton, R., Peck, A., Rembisz, J., Choset, H.: Parameterized and scripted gaits for modular snake robots. Adv. Robot. 23(9), 1131–1158 (2009)
Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)
Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)
Li, C., Hsieh, S.T., Goldman, D.I.: Multi-functional foot use during running in the zebra-tailed lizard (callisaurus draconoides). J. Exp. Biol. 215(18), 3293–3308 (2012)
Irschick, D.J., Jayne, B.C.: Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard callisaurus draconoides and uma scoparia. J. Exp. Biol. 201(2), 273–287 (1998)
Glasheen, J., McMahon, T.: Size-dependence of water-running ability in basilisk lizards (basiliscus basiliscus). J. Exp. Biol. 199(12), 2611–2618 (1996)
Hsieh, S.T.: Three-dimensional hindlimb kinematics of water running in the plumed basilisk lizard (basiliscus plumifrons). J. Exp. Biol. 206(23), 4363–4377 (2003)
Irschick, D.J., Jayne, B.C.: Comparative three-dimensional kinematics of the hindlimb for high-speed bipedal and quadrupedal locomotion of lizards. J. Exp. Biol. 202(9), 1047–1065 (1999)
Hsieh, S.T., Lauder, G.V.: Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl. Acad. Sci. U.S.A. 101(48), 16784–16788 (2004)
Bush, J.W., Hu, D.L.: Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339–369 (2006)
Snyder, R.C.: Bipedal locomotion of the lizard basiliscus basiliscus. Copeia 1949(2), 129–137 (1949)
Aerts, P., Van Damme, R., D’Août, K., Van Hooydonck, B.: Bipedalism in lizards: whole-body modelling reveals a possible spandrel. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 358(1437), 1525–1533 (2003)
Park, H.S., Sitti, M.: Compliant footpad design analysis for a bio-inspired quadruped amphibious robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 645–651. IEEE (2009)
Acknowledgements
The authors would like to thank ASU Institutional Animal Care and Use Committee (IACUC) for animal husbandry (IACUC Protocol #: 16-1504R), Professor Dale DeNardo for greatly valuable suggestions on the choice of animal and animal experiments, Professor Heather Emady and Spandana Vajrala for fruitful discussions on studying wet granular media, Carolyn Harvey for her contributions to the setup development, Daniel Lee, Isaac Charcos, and John Millard for helping with animal data collection/analysis, and Arizona State University for funding.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bagheri, H., Taduru, V., Panchal, S., White, S., Marvi, H. (2017). Animal and Robotic Locomotion on Wet Granular Media. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-63537-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63536-1
Online ISBN: 978-3-319-63537-8
eBook Packages: Computer ScienceComputer Science (R0)