Abstract
Sentiment analysis one of the important and interesting task in natural languages. A number of resources and tools have been developed for sentiment analysis of English, Turkish, Russian and other languages. Unfortunately, there was no data and tools available for sentiment analysis in Kazakh. The Dictionary of Kazakh sentiment words has been created during the study. In this work we described the rule-based method using dictionary for sentiment analysis of texts in the Kazakh language, based on the morphological rules and ontological model. Ontological model for rule extraction that determines sentiment was built. Our rule based method achieves 83% accuracy for simple sentences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, San Rafael (2012)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. In: Foundations and Trends® in Information Retrieval. Now Publishers (2008)
Loukachevitch, N.V., Chetviorkin, I.I.: Evaluating sentiment analysis systems in Russian. Artif. Intell. Decis. Mak. 1, 25–33 (2014). (in Russian)
Chetviorkin, I., Braslavskiy, P., Loukachevich, N.: Sentiment analysis track at ROMIP 2011. In: Proceedings of International Conference Dialog-2012, vol. 2, pp. 1–14 (2012)
Chetvirokin, I., Loukachevitch, N.: Sentiment analysis track at ROMIP 2012. In: Proceedings of International Conference Dialog-2013, vol. 2, pp. 40–50 (2013)
Chetviorkin, I., Loukachevitch, N.: Extraction of Russian sentiment lexicon for product meta-domain. In: Proceedings of COLING 2012, pp. 593–610 (2012)
Steinberger, J., Lenkova, P., Ebrahim, M., Ehrmann, M., Hurriyetogly, A., Kabadjov, M., Steinberger, R., Tanev, H., Zavarella, V., Vazquez, S.: Creating sentiment dictionaries via triangulation. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, ACL-HLT, pp. 28–36 (2011)
Akba, F., Uçan, A., Sezer, EA., Sever, H.: Assessment of feature selection metrics for sentiment analyses: Turkish movie reviews. In: Proceedings of the 8th European Conference on Data Mining, pp. 180–184 (2014)
Yıldırım, E., Çetin, F., Eryiğit, G., Temel, T.: The impact of NLP on Turkish sentiment analysis. In: Proceedings of the TURKLANG 2014 International Conference on Turkic Language Processing, Istanbul (2014)
Eryiğit, G., Çetin, F., Yanık, M., Temel, T., Çiçekli, I.: TURKSENT: a sentiment annotation tool for social media. In: Proceedings of the 7th Linguistic Annotation Workshop & Interoperability with Discourse, ACL 2013, Sofia, Bulgaria (2013)
Sixto, J., Almeida, A., López-de-Ipiña, D.: An approach to subjectivity detection on Twitter using the structured information. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS, vol. 9875, pp. 121–130. Springer, Cham (2016). doi:10.1007/978-3-319-45243-2_11
Mohammad, S., Salameh, M., Kiritchenko, S.: Sentiment lexicons for Arabic social media. In: Proceedings of the 10th Edition of the Language Resources and Evaluation Conference, Portorož, Slovenia (2016)
Tartir, S., Abdul-Nabi, I.: Semantic sentiment analysis in Arabic social media. J. King Saud Univ. Comput. Inf. Sci. 29(2), 229–233 (2016)
Sakenovich, N.S., Zharmagambetov, A.S.: On one approach of solving sentiment analysis task for Kazakh and Russian languages using deep learning. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS, vol. 9876, pp. 537–545. Springer, Cham (2016). doi:10.1007/978-3-319-45246-3_51
Abdullin, Y.B., Ivanov, V.V.: Deep learning model for bilingual sentiment classification of short texts. Sci. Tech. J. Inf. Technol. Mech. Optics 17(1), 129–136 (2017)
Picard, R.W.: Affective computing. MIT Media Laboratory Perceptual Computing Section Technical Report No. 321. Media Lab. Massachusetts Institute of Technology, Cambridge Univ. (1995)
Biondi, G., Franzoni, V., Li, Y., Milani, A.: Web-based similarity for emotion recognition in web objects. In: Proceedings - 9th IEEE/ACM International Conference on Utility and Cloud Computing, UCC 2016, pp. 327–332 (2016)
Poria, S., Chaturvedi, I., Cambria, E., Hussain, A.: Convolutional MKL based multimodal emotion recognition and sentiment analysis. In: Proceedings - IEEE International Conference on Data Mining, ICDM, art. no. 7837868, pp. 439–448 (2017)
Arunnehru, J., Kalaiselvi Geetha, M.: Automatic human emotion recognition in surveillance video. In: Dey, N., Santhi, V. (eds.) Intelligent Techniques in Signal Processing for Multimedia Security. SCI, vol. 660, pp. 321–342. Springer, Cham (2017). doi:10.1007/978-3-319-44790-2_15
Jiang, R., Ho, A.T.S., Cheheb, I., Al-Maadeed, N., Al-Maadeed, S., Bouridane, A.: Emotion recognition from scrambled facial images via many graph embedding. Pattern Recogn. 67, 245–251 (2017)
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)
Yergesh, B., Mukanova, A., Sharipbay, A., Bekmanova, G., Razakhova, B.: Semantic hyper-graph based representation of nouns in the Kazakh language. Computacion y Sistemas 18(3), 627–635 (2014)
Cicortas, A., Iordan, V., Fortis, A.: Considerations on construction ontologies. J. Ann. Comput. Sci. Ser. 1, 79–88 (2009)
Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum Comput Stud. 43(5–6), 907–928 (1995)
Yergesh, B., Sharipbay, A., Bekmanova, G., Lipnitskii, S.: Sentiment analysis of Kazakh phrases based on morphological rules. J. Kyrgyz State Tech. Univ. Named After I. Razzakov. Theor. Appl. Sci. Tech. J. 2(38), 39–42 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, M. (2017). Ontology-Based Sentiment Analysis of Kazakh Sentences. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10406. Springer, Cham. https://doi.org/10.1007/978-3-319-62398-6_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-62398-6_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62397-9
Online ISBN: 978-3-319-62398-6
eBook Packages: Computer ScienceComputer Science (R0)