Landslide Risk Analysis Along Strategic Touristic Roads in Basilicata (Southern Italy) Using the Modified RHRS 2.0 Method | SpringerLink
Skip to main content

Landslide Risk Analysis Along Strategic Touristic Roads in Basilicata (Southern Italy) Using the Modified RHRS 2.0 Method

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10404))

Included in the following conference series:

Abstract

This work consists of the application of a modified method for the landslide risk assessment along a strategic touristic road. The proposed qualitative method is a modification of the original method Rockfall Hazard Rating System (RHRS) developed by Pierson et al. [26] at the Oregon State Highway Division (subsequently modified by other authors) and based on the exponential scoring functions.

The proposed application involves a careful analysis of environmental factors that influence the type of the mass movement as the slope, the use of the soil, the climatic conditions and the lithology, as such as parameters related to the structural characteristics of roads and traffic for example the road width, the number of lanes in each direction and the Average Vehicle Risk. The use of the different technical approaches, like double entry matrices and the implementation, for a few steps, of an Artificial Neural Network (ANN) allows to assess the analyzed landslide intensity, as well as the probability that it will occur in a given area along a transportation corridor. The application of such method involves a first phase of the data retrieval followed by a subsequent implementation and processing in a GIS softwares. The analysis carried out has been characterized by a step aimed at obtaining different layers, essential for the classification of the landsliding predisposing factors cataloged according to a final score by identifying the five risk threshold classes. So, in order to prepare appropriate interventions of protection and monitoring (if necessary, e.g. evacuation plans), underling the most dangerous areas has been fundamental.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anbalagan, R.: Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng. Geol. 32, 269–277 (1992)

    Article  Google Scholar 

  2. Budetta, P.: Assessment of rockfall along roads. Bull. Nat. Hazards Earth Syst. Sci. 4, 71–81 (2004)

    Article  Google Scholar 

  3. Budetta, P., Nappi, M.: Comparison between qualitative rockfall risk rating systems for a road affected by high traffic intensity. Nat. Hazards Earth Syst. Sci. 13, 1643–1653 (2013). doi:10.5194/nhess-13-1643-2013

    Article  Google Scholar 

  4. Bunce, C.M., Cruden, D.M., Morgenstern, N.R.: Assessment of the hazard from rockfall on a highway. Can. Geotech. J. 34, 344–356 (1997)

    Article  Google Scholar 

  5. Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P.: GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Proc. Land. 16, 427–445 (1991)

    Article  Google Scholar 

  6. D’Ecclesiis, G., Grassi, D., Sdao, F.: Espandimenti laterali in corrispondenza di due opposti versanti dei Monti di Maratea (Basilicata). Atti del 2° convegno internazionale di geoidrologia 49, 1–17 (1993)

    Google Scholar 

  7. Dai, F.C., Lee, C.F.: Terrain-based mapping of landslide susceptibility using a geographical information systems: a case study. Can. Geotech. J. 38, 911–923 (2001)

    Article  Google Scholar 

  8. Duman, T.Y., Can, T., Gokceoglu, C., Nefeslioglu, H.A., Sonmez, H.: Application of logistic regression for landslide susceptibility zoning of Cekmece area, Istanbul, Turkey. Eng. Geol. 51, 241–256 (2006)

    Article  Google Scholar 

  9. Eastman, J.R.: IDRISI Taiga, Guide to GIS and Image Processing, User’s Guide. Press Clark University, Worcester (2009)

    Google Scholar 

  10. Follador, M.: Modellizzazione spazio-temporale delle dinamiche di uso del suolo ed analisi comparata di differenti approcci predittivi. Ph.D. dissertation, Università Degli Studi di Bologna (2008)

    Google Scholar 

  11. Foody, G.M.: Estimation of sub-pixel land cover composition in the presence of untrained classes. Comput. Geosci. 26, 469–478 (2000)

    Article  Google Scholar 

  12. Hammond, C.: Geology in landslide engineering. In: First North American Landslide Conference, Vail Colorado (2007)

    Google Scholar 

  13. Joshi, M., Buchanan, K.T., Shroff, S., Orenic, T.V.: Delta and Hairy establish a periodic prepattern that positions sensory bristles in Drosophila legs. Dev. Biol. 293(1), 64–76 (2006). doi:10.1016/j.ydbio.2006.01.005. (Export to RIS)

    Article  Google Scholar 

  14. Kanevski, M., Maignan, M.: Analysis and Modelling of Spatial Environmental Data. EPFL Press, Lausanne (2004)

    MATH  Google Scholar 

  15. Kanungo, D.P., Arora, M.K., Sarkar, S., Gupta, R.P.: A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng. Geol. 85(3–4), 347–366 (2006)

    Article  Google Scholar 

  16. Lee, S., Min, K.: Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. 40, 1095–1113 (2001)

    Article  Google Scholar 

  17. Lee, S., Ryu, J.H., Won, J.S., Park, H.J.: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng. Geol. 71, 289–302 (2004)

    Article  Google Scholar 

  18. Losasso, L., Derron, M.-H., Horton, P., Jaboyedoff, M., Sdao, F.: Definition and mapping of potential rockfall source and propagation areas at a regional scale in Basilicata region (Southern Italy). Rend. Online Soc. Geol. Ital. 41, 175–178 (2016). doi:10.3301/ROL.2016.122

    Google Scholar 

  19. Losasso, L., Jaboyedoff, M., Sdao, F.: Potential rock fall source areas identification and rock fall propagation in the Province of Potenza territory using an empirically distributed approach. Landslides (2017a). doi:10.1007/s10346-017-0807-x

  20. Losasso, L., Pascale, S., Sdao, F.: Landslides risk assessment along roads: the transportation corridors of the “Dolomiti Lucane” (Basilicata). In: 4th World Landslide Forum – Ljubljana. Advancing Culture of Living with Landslides: vol. 4 Diversity of Landslide Forms (2017b, in press)

    Google Scholar 

  21. Mejia-Navarro, M., Wohl, E.E.: Geological hazard and risk evaluation using GIS: methodology and model applied to Medellin, Colombia. Bull. Assoc. Eng. Geol. 31, 459–481 (1994)

    Google Scholar 

  22. Mejia-Navarro, M., Garcia, L.A.: Natural hazard and risk assessment using decision support systems, application Glenwood Springs, Colorado. Environ. Eng. Geosci. 2(3), 299–324 (1996)

    Article  Google Scholar 

  23. Miller, S.M.: Development and Implementation of the Idaho Highway Slope Instability and Management System (HiSIMS). Idaho Transportation Department. report N03–07 (2003)

    Google Scholar 

  24. Nemmour, H., Chibani, Y.: Multiple support vector machines for land cover change detection: an application for mapping urban extension. ISPRS J. Photogram. Remote Sens. 61, 125–133 (2006)

    Article  Google Scholar 

  25. Pascale, S., Sdao, F., Sole, A.: A model for assessing the systemic vulnerability in landslide prone areas. Nat. Hazards Earth Syst. Sci. 10, 1575–1590 (2010)

    Article  Google Scholar 

  26. Pierson, L.A., Davis, S.A., Van Vickle, R.: Rockfall Hazard Rating System Implementation Manual: Oregon Department of Transportation, FHWA-OR-EG-90-01. FHWA, U.S. Department of Transportation (1990)

    Google Scholar 

  27. Pierson, L.A., Van Vickle, R.: Rockfall Hazard Rating System – Participant’s manual, Federal Highway Administration, U.S. Department of Transportation Report FHWA-SA-93-057, 104 p. (1993)

    Google Scholar 

  28. Sansone, M.T.C., Rizzo, G.: Pumpellyite veins in the metadolerite of the Frido Unit (southern Appennines-Italy). Periodico di Mineralogia 81, 75–92 (2012). doi:10.2451/2012PM0005

    Google Scholar 

  29. Sdao, F., Simeone, V.: Mass movements affecting goddess Mefitis sanctuary in Rossano di Vaglio (Basilicata, southern Italy). J. Cult. Herit. 8, 77–80 (2007). doi:10.1016/j.culher.2006.10.004

    Article  Google Scholar 

  30. Uribe-Extebarria, G., Morales, T., Uriarte, J.A., Ibarra, V.: Rock cut stability assessment in mountainous regions. Environ. Geol. 48, 1002–1013 (2005)

    Article  Google Scholar 

  31. Villa, N., Paegelow, M., Camacho, O.M.T., Cornez, L., Ferraty, F., Ferré, L., Sarda, P.: Various approaches for predicting land cover in mountain areas. Commun. Stat.-Simul. Comput. 36, 73–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wong, C.K.L.: New Priority Classification for Slopes and Retaining Walls (GEO Report No. 68), Geotechnical Engineering Office, Hong Kong (1998)

    Google Scholar 

  33. Wyllie, D.: Rock Slope Inventory/Maintenance Programs, FHWA Rockfall Mitigation Seminar, 13th Northwest Geotechnical Workshop, Portland, Oregon (1987)

    Google Scholar 

  34. Yalcin, A.: GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Anderson (Turkey): comparison of results and confirmations. CATENA 1, 1–12 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Losasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Losasso, L., Rinaldi, C., Alberico, D., Sdao, F. (2017). Landslide Risk Analysis Along Strategic Touristic Roads in Basilicata (Southern Italy) Using the Modified RHRS 2.0 Method. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics