Approximation Algorithms for the Maximum Weight Internal Spanning Tree Problem | SpringerLink
Skip to main content

Approximation Algorithms for the Maximum Weight Internal Spanning Tree Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10392))

Included in the following conference series:

Abstract

Given a vertex-weighted connected graph \(G = (V, E)\), the maximum weight internal spanning tree (MwIST for short) problem asks for a spanning tree T of G such that the total weight of the internal vertices in T is maximized. The unweighted variant, denoted as MIST, is NP-hard and APX-hard, and the currently best approximation algorithm has a proven performance ratio 13/17. The currently best approximation algorithm for MwIST only has a performance ratio \(1/3 - \epsilon \), for any \(\epsilon > 0\). In this paper, we present a simple algorithm based on a novel relationship between MwIST and the maximum weight matching, and show that it achieves a better approximation ratio of 1/2. When restricted to claw-free graphs, a special case been previously studied, we design a 7/12-approximation algorithm.

This work was supported by KAKENHI Japan Grant No. 24500023 (ZZC), NSERC Canada (GL), GRF Hong Kong Grants CityU 114012 and CityU 123013 (LW), NSFC Grant No. 61672323 (GL), CSC Grant No. 201508330054 (YC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binkele-Raible, D., Fernau, H., Gaspers, S., Liedloff, M.: Exact and parameterized algorithms for max internal spanning tree. Algorithmica 65, 95–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, Z.-Z., Harada, Y., Wang, L.: An approximation algorithm for maximum internal spanning tree. CoRR, abs/1608.00196 (2016)

    Google Scholar 

  3. Chen, Z.-Z., Lin, G., Wang, L., Chen, Y., Wang, D.: Approximation algorithms for the maximum weight internal spanning tree problem. arXiv, 1608.03299 (2016)

    Google Scholar 

  4. Coben, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding \(k\)-vertex out-trees and its application to \(k\)-internal out-branching problem. J. Comput. Syst. Sci. 76, 650–662 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fomin, F.V., Gaspers, S., Saurabh, S., Thomasse, S.: A linear vertex kernel for maximum internal spanning tree. J. Comput. Syst. Sci. 79, 1–6 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fomin, F.V., Lokshtanov, D., Grandoni, F., Saurabh, S.: Sharp separation and applications to exact and parameterized algorithms. Algorithmica 63, 692–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  8. Knauer, M., Spoerhase, J.: Better approximation algorithms for the maximum internal spanning tree problem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 459–470. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03367-4_40

    Chapter  Google Scholar 

  9. Li, W., Chen, J., Wang, J.: Deeper local search for better approximation on maximum internal spanning trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 642–653. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44777-2_53

    Google Scholar 

  10. Li, W., Wang, J., Chen, J., Cao, Y.: A 2k-vertex kernel for maximum internal spanning tree. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 495–505. Springer, Cham (2015). doi:10.1007/978-3-319-21840-3_41

    Chapter  Google Scholar 

  11. Li, X., Jiang, H., Feng, H.: Polynomial time for finding a spanning tree with maximum number of internal vertices on interval graphs. In: Zhu, D., Bereg, S. (eds.) FAW 2016. LNCS, vol. 9711, pp. 92–101. Springer, Cham (2016). doi:10.1007/978-3-319-39817-4_10

    Google Scholar 

  12. Li, X., Zhu, D.: A \(4/3\)-approximation algorithm for the maximum internal spanning tree problem. CoRR, abs/1409.3700 (2014)

    Google Scholar 

  13. Li, X., Zhu, D.: Approximating the maximum internal spanning tree problem via a maximum path-cycle cover. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 467–478. Springer, Cham (2014). doi:10.1007/978-3-319-13075-0_37

    Google Scholar 

  14. Prieto, E.: Systematic kernelization in FPT algorithm design. Ph.D. thesis. The University of Newcastle, Australia (2005)

    Google Scholar 

  15. Prieto, E., Sloper, C.: Either/or: using Vertex Cover structure in designing FPT-algorithms — the case of k-Internal Spanning Tree. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45078-8_41

    Chapter  Google Scholar 

  16. Prieto, E., Sloper, C.: Reducing to independent set structure - the case of \(k\)-internal spanning tree. Nordic J. Comput. 12, 308–318 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Salamon, G.: Approximating the maximum internal spanning tree problem. Theoret. Comput. Sci. 410, 5273–5284 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Salamon, G.: Degree-based spanning tree optimization. Ph.D. thesis. Budapest University of Technology and Economics, Hungary (2009)

    Google Scholar 

  19. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Inf. Process. Lett. 105, 164–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Zhong Chen or Guohui Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, ZZ., Lin, G., Wang, L., Chen, Y., Wang, D. (2017). Approximation Algorithms for the Maximum Weight Internal Spanning Tree Problem. In: Cao, Y., Chen, J. (eds) Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science(), vol 10392. Springer, Cham. https://doi.org/10.1007/978-3-319-62389-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62389-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62388-7

  • Online ISBN: 978-3-319-62389-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics