Abstract
The Evolutionary optimization (EO) field has become an active area of research for handling complex optimization problems. However, EO techniques need tuning to obtain better results. Visualization is one approach used by EA researchers to identify early stagnation, loss of diversity, and other indicators that can help them to guide evolutionary search to better areas. In this paper, a Semantic Evolutionary Visualization framework (SEV) is proposed for analysing and exploring the potential EA dynamics. Empirical results have shown that the SEV can help to reveal and monitor information on evolutionary dynamics; thus, it can assist researchers in adapting the evolutionary parameters to obtain better performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Guliashki, V., Toshev, H., Korsemov, C.: Survey of evolutionary algorithms used in multiobjective optimization. Prob. Eng. Cybern. Rob. 60, 42–54 (2009)
Peltonen, T.: Comparative study of population-based metaheuristic methods in global optimization (2015)
McClymont, K., Keedwell, E., Savic, D.: An analysis of the interface between evolutionary algorithm operators and problem features for water resources problems. A case study in water distribution network design. Env. Model. Softw. (2015)
Tušar, T., Filipič, B.: Visualization of pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans. Evol. Comput. 19(2), 225–245 (2015)
He, Z., Yen, G.G.: Visualization and performance metric in many-objective optimization. IEEE Trans. Evol. Comput. 20(3), 386–402 (2016)
Meyer, J., Thomas, J., Diehl, S., Fisher, B.D., Keim, D.A., Laidlaw, D.H., Miksch, S., Mueller, K., Ribarsky, W., Preim, B., et al.: From visualization to visually enabled reasoning. Sci. Vis. Adv. Concepts 1, 227–245 (2010)
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)
Collins, T.D.: Visualizing evolutionary computation. In: Advances in Evolutionary Computing, pp. 95–116. Springer, Heidelberg (2003)
Paterson, T., Graham, M., Kennedy, J., Law, A.: Evaluating the viper pedigree visualisation: detecting inheritance inconsistencies in genotyped pedigrees. In: 2011 IEEE Symposium on Biological Data Visualization (BioVis), pp. 119–126. IEEE (2011)
Collins, T.D.: Using software visualisation technology to help evolutionary algorithm users validate their solutions. In: ICGA, pp. 307–314. Citeseer (1997)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
Thangaraj, R., Pant, M., Abraham, A., Badr, Y.: Hybrid evolutionary algorithm for solving global optimization problems. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 310–318. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02319-4_37
Cohen, J., Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/correlation Analysis for the Behavioral Sciences. Routledge, New York (2013)
De Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek, vol. 27. Cambridge University Press, Cambridge (2011)
Romero, G., Merelo, J.J., Castillo, P.A., Castellano, J.G., Arenas, M.G.: Genetic algorithm visualization using self-organizing maps. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 442–451. Springer, Heidelberg (2002). doi:10.1007/3-540-45712-7_43
Amir, E.-A.D., Davis, K.L., Tadmor, M.D., Simonds, E.F., Levine, J.H., Bendall, S.C., Shenfeld, D.K., Krishnaswamy, S., Nolan, G.P., Pe’er, D.: visne enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31(6), 545–552 (2013)
Jornod, G., Di Mario, E.L., Navarro Oiza, I., Martinoli, A.: Swarmviz: an open-source visualization tool for particle swarm optimization. In: IEEE Congress on Evolutionary Computation, no. EPFL-CONF-206841 (2015)
de Freitas, A.R., Fleming, P.J., Guimarães, F.G.: Aggregation trees for visualization and dimension reduction in many-objective optimization. Inf. Sci. 298, 288–314 (2015)
Khemka, N., Jacob, C.: Visplore: a toolkit to explore particle swarms by visual inspection. In: Proceedings of the 11th Annual conference on Genetic and Evolutionary Computation, pp. 41–48. ACM (2009)
Acknowledgments
I would to acknowledge prof. Hussein Abbass for supporting this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Keshk, M. (2017). Semantic Evolutionary Visualization. In: Tan, Y., Takagi, H., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2017. Lecture Notes in Computer Science(), vol 10386. Springer, Cham. https://doi.org/10.1007/978-3-319-61833-3_66
Download citation
DOI: https://doi.org/10.1007/978-3-319-61833-3_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61832-6
Online ISBN: 978-3-319-61833-3
eBook Packages: Computer ScienceComputer Science (R0)