Abstract
In this paper, we consider the application of object-oriented Bayesian networks to failure diagnostics in manufacturing systems and continuous model improvement based on operational data. The analysis is based on an object-oriented Bayesian network developed for failure diagnostics of a one-dimensional pick-and-place industrial robot developed by IEF-Werner GmbH. We consider four learning algorithms (batch Expectation-Maximization (EM), incremental EM, Online EM and fractional updating) for parameter updating in the object-oriented Bayesian network using a real operational dataset. Also, we evaluate the performance of the considered algorithms on a dataset generated from the model to determine which algorithm is best suited for recovering the underlying generating distribution. The object-oriented Bayesian network has been integrated into both the control software of the robot as well as into a software architecture that supports diagnostic and prognostic capabilities of devices in manufacturing systems. We evaluate the time performance of the architecture to determine the feasibility of on-line learning from operational data using each of the four algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks with hidden variables. Mach. Learn. 29(2), 213–244 (1997)
Cappe, O., Moulines, E.: Online EM algorithm for latent data models. J. Roy. Stat. Soc. Ser. B (Stat. Method.) 71(3), 593–613 (2009)
Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Networks and Expert Systems. Springer, New York (1999)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38 (1977)
Jensen, F.V.: Gradient descent training of Bayesian networks. In: Proceedings of the ECSQARU, pp. 190–200 (1999)
Kjærulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams. A Guide to Construction and Analysis, 2nd edn. Springer, New York (2013)
Kokolakis, G., Nanopoulos, P.: Bayesian multivariate micro-aggregation under the Hellingers distance criterion. Res. Offic. Stat. 4(1), 117–126 (2001)
Koller, D., Pfeffer, A.: Object-oriented bayesian networks. In: Proceedings of the UAI, pp. 302–313 (1997)
Lauritzen, S.L.: The EM algorithm for graphical association models with missing data. Comput. Stat. Anal. 19, 191–201 (1995)
Madsen, A.L., Lang, M., Kjærulff, U.B., Jensen, F.: The Hugin tool for learning Bayesian networks. In: Proceedings of the ECSQARU, pp. 594–605 (2003)
Madsen, A.L., Søndberg-Jeppesen, N., Lohse, N., Sayed, M.: A methodology for developing local smart diagnostic models using expert knowledge. In: IEEE INDIN, pp. 1682–1687 (2015)
Madsen, A.L., Søndberg-Jeppesen, N., Sayed, M.S., Peschl, M., Lohse, N.: Applying object-oriented Bayesian networks for smart diagnosis and health monitoring at both component and factory level. Accepted for IEA/AIE 2017 (2017)
Neil, M., Fenton, N., Nielsen, L.M.: Building large-scale Bayesian networks. Knowl. Eng. Rev. 15(3), 257–284 (2000)
Neto, L., Reis, J., Guimaraes, D., Concalves, G.: Sensor cloud: smartcomponent framework for reconfigurable diagnostics in intelligent manufacturing environments. In: IEEE INDIN, pp. 1706–1711 (2015)
Neto, L., Reis, J., Silva, R., Concalves, G.: Sensor SelComp, a smart component for the industrial sensor cloud of the future. In: IEEE ICIT, pp. 1256–1261 (2017)
Olesen, K.G., Lauritzen, S.L., Jensen, F.V.: aHUGIN: a system creating adaptive causal probabilistic networks. In: Proceedings of the UAI, pp. 223–229 (1992)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Mateo (1988)
Ratnapinda, P., Druzdzel, M.J.: Learning discrete Bayesian network parameters from continuous data streams: what is the best strategy. J. Appl. Logic 13, 628–642 (2015)
Russell, S., Binder, J., Koller, D., Kanazawa, K.: Local learning in probabilistic networks with hidden variables. In: Proceedings of IJCAI, pp. 1146–1152 (1995)
Sayed, M.S., Lohse, N., Søndberg-Jeppesen, N., Madsen, A.L.: SelSus: towards a reference architecture for diagnostics and predictive maintenance using smart manufacturing devices. In: IEEE INDIN, p. 6 (2015)
Titterington, D.M.: Updating a diagnostic system using unconfirmed cases. Appl. Stat. 25, 238–247 (1976)
Zagorecki, A., Voortman, M., Druzdzel, M.J.: Decomposing local probability distributions in bayesian networks for improved inference and parameter learning. In: Proceedings of the FLAIRS, pp. 860–865 (2006)
Acknowledgments
This work is part of the project “Health Monitoring and Life-Long Capability Management for SELf-SUStaining Manufacturing Systems (SelSus)” which is funded by the Commission of the European Communities under the 7th Framework Programme, Grant agreement no: 609382. We would like to thank Andres Masegosa for discussions on the Online EM algorithm and the reviewers for their insightful comments, which have helped to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Madsen, A.L. et al. (2017). Parameter Learning Algorithms for Continuous Model Improvement Using Operational Data. In: Antonucci, A., Cholvy, L., Papini, O. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017. Lecture Notes in Computer Science(), vol 10369. Springer, Cham. https://doi.org/10.1007/978-3-319-61581-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-61581-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61580-6
Online ISBN: 978-3-319-61581-3
eBook Packages: Computer ScienceComputer Science (R0)