Parameter Learning Algorithms for Continuous Model Improvement Using Operational Data | SpringerLink
Skip to main content

Parameter Learning Algorithms for Continuous Model Improvement Using Operational Data

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2017)

Abstract

In this paper, we consider the application of object-oriented Bayesian networks to failure diagnostics in manufacturing systems and continuous model improvement based on operational data. The analysis is based on an object-oriented Bayesian network developed for failure diagnostics of a one-dimensional pick-and-place industrial robot developed by IEF-Werner GmbH. We consider four learning algorithms (batch Expectation-Maximization (EM), incremental EM, Online EM and fractional updating) for parameter updating in the object-oriented Bayesian network using a real operational dataset. Also, we evaluate the performance of the considered algorithms on a dataset generated from the model to determine which algorithm is best suited for recovering the underlying generating distribution. The object-oriented Bayesian network has been integrated into both the control software of the robot as well as into a software architecture that supports diagnostic and prognostic capabilities of devices in manufacturing systems. We evaluate the time performance of the architecture to determine the feasibility of on-line learning from operational data using each of the four algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ief-werner.de.

References

  1. Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks with hidden variables. Mach. Learn. 29(2), 213–244 (1997)

    Article  MATH  Google Scholar 

  2. Cappe, O., Moulines, E.: Online EM algorithm for latent data models. J. Roy. Stat. Soc. Ser. B (Stat. Method.) 71(3), 593–613 (2009)

    Article  MATH  Google Scholar 

  3. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Networks and Expert Systems. Springer, New York (1999)

    MATH  Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Jensen, F.V.: Gradient descent training of Bayesian networks. In: Proceedings of the ECSQARU, pp. 190–200 (1999)

    Google Scholar 

  6. Kjærulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams. A Guide to Construction and Analysis, 2nd edn. Springer, New York (2013)

    MATH  Google Scholar 

  7. Kokolakis, G., Nanopoulos, P.: Bayesian multivariate micro-aggregation under the Hellingers distance criterion. Res. Offic. Stat. 4(1), 117–126 (2001)

    Google Scholar 

  8. Koller, D., Pfeffer, A.: Object-oriented bayesian networks. In: Proceedings of the UAI, pp. 302–313 (1997)

    Google Scholar 

  9. Lauritzen, S.L.: The EM algorithm for graphical association models with missing data. Comput. Stat. Anal. 19, 191–201 (1995)

    Article  MATH  Google Scholar 

  10. Madsen, A.L., Lang, M., Kjærulff, U.B., Jensen, F.: The Hugin tool for learning Bayesian networks. In: Proceedings of the ECSQARU, pp. 594–605 (2003)

    Google Scholar 

  11. Madsen, A.L., Søndberg-Jeppesen, N., Lohse, N., Sayed, M.: A methodology for developing local smart diagnostic models using expert knowledge. In: IEEE INDIN, pp. 1682–1687 (2015)

    Google Scholar 

  12. Madsen, A.L., Søndberg-Jeppesen, N., Sayed, M.S., Peschl, M., Lohse, N.: Applying object-oriented Bayesian networks for smart diagnosis and health monitoring at both component and factory level. Accepted for IEA/AIE 2017 (2017)

    Google Scholar 

  13. Neil, M., Fenton, N., Nielsen, L.M.: Building large-scale Bayesian networks. Knowl. Eng. Rev. 15(3), 257–284 (2000)

    Article  MATH  Google Scholar 

  14. Neto, L., Reis, J., Guimaraes, D., Concalves, G.: Sensor cloud: smartcomponent framework for reconfigurable diagnostics in intelligent manufacturing environments. In: IEEE INDIN, pp. 1706–1711 (2015)

    Google Scholar 

  15. Neto, L., Reis, J., Silva, R., Concalves, G.: Sensor SelComp, a smart component for the industrial sensor cloud of the future. In: IEEE ICIT, pp. 1256–1261 (2017)

    Google Scholar 

  16. Olesen, K.G., Lauritzen, S.L., Jensen, F.V.: aHUGIN: a system creating adaptive causal probabilistic networks. In: Proceedings of the UAI, pp. 223–229 (1992)

    Google Scholar 

  17. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Mateo (1988)

    MATH  Google Scholar 

  18. Ratnapinda, P., Druzdzel, M.J.: Learning discrete Bayesian network parameters from continuous data streams: what is the best strategy. J. Appl. Logic 13, 628–642 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Russell, S., Binder, J., Koller, D., Kanazawa, K.: Local learning in probabilistic networks with hidden variables. In: Proceedings of IJCAI, pp. 1146–1152 (1995)

    Google Scholar 

  20. Sayed, M.S., Lohse, N., Søndberg-Jeppesen, N., Madsen, A.L.: SelSus: towards a reference architecture for diagnostics and predictive maintenance using smart manufacturing devices. In: IEEE INDIN, p. 6 (2015)

    Google Scholar 

  21. Titterington, D.M.: Updating a diagnostic system using unconfirmed cases. Appl. Stat. 25, 238–247 (1976)

    Article  Google Scholar 

  22. Zagorecki, A., Voortman, M., Druzdzel, M.J.: Decomposing local probability distributions in bayesian networks for improved inference and parameter learning. In: Proceedings of the FLAIRS, pp. 860–865 (2006)

    Google Scholar 

Download references

Acknowledgments

This work is part of the project “Health Monitoring and Life-Long Capability Management for SELf-SUStaining Manufacturing Systems (SelSus)” which is funded by the Commission of the European Communities under the 7th Framework Programme, Grant agreement no: 609382. We would like to thank Andres Masegosa for discussions on the Online EM algorithm and the reviewers for their insightful comments, which have helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders L. Madsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Madsen, A.L. et al. (2017). Parameter Learning Algorithms for Continuous Model Improvement Using Operational Data. In: Antonucci, A., Cholvy, L., Papini, O. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017. Lecture Notes in Computer Science(), vol 10369. Springer, Cham. https://doi.org/10.1007/978-3-319-61581-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61581-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61580-6

  • Online ISBN: 978-3-319-61581-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics