Exploring Learner Model Differences Between Students | SpringerLink
Skip to main content

Exploring Learner Model Differences Between Students

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2017)

Abstract

Bayesian Knowledge Tracing (BKT) has been employed successfully in intelligent learning environments to individualize curriculum sequencing and help messages. Standard BKT employs four parameters, which are estimated separately for individual knowledge components, but not for individual students. Studies have shown that individualizing the parameter estimates for students based on existing data logs improves goodness of fit and leads to substantially different practice recommendations. This study investigates how well BKT parameters in a tutor lesson can be individualized ahead of time, based on learners’ prior activities, including reading text and completing prior tutor lessons. We find that directly applying best-fitting individualized parameter estimates from prior tutor lessons does not appreciably improve BKT goodness of fit for a later tutor lesson, but that individual differences in the later lesson can be effectively predicted from measures of learners’ behaviors in reading text and in completing the prior tutor lessons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Inter. 4, 253–278 (1995)

    Article  Google Scholar 

  2. Mayo, M., Mitrovic, A.: Optimising ITS behaviour with Bayesian networks and decision theory. Int. J. Artif. Intel. Educ. 12, 124–153 (2001)

    Google Scholar 

  3. Shute, V.: Smart: student modeling approach for responsive tutoring. User Model. User-Adap. Inter. 5(1), 1–44 (1995)

    Article  Google Scholar 

  4. Ritter, S., Yudelson, M., Fancsali, S., Berman, S.: How mastery learning works at scale. In: Proceedings of the Third ACM Conference on Learning @ Scale, pp. 71–79 (2016)

    Google Scholar 

  5. Ganeshan, R., Johnson, W.L., Shaw, E., Wood, B.P.: Tutoring diagnostic problem solving. In: Gauthier, G., Frasson, C., VanLehn, K. (eds.) ITS 2000. LNCS, vol. 1839, pp. 33–42. Springer, Heidelberg (2000). doi:10.1007/3-540-45108-0_7

    Chapter  Google Scholar 

  6. Conati, C., Gertner, A., VanLehn, K.: Using Bayesian networks to manage uncertainty in student modeling. User Model. User-Adap. Inter. 12, 371–417 (2002)

    Article  MATH  Google Scholar 

  7. Pardos, Z., Bergner, Y., Seaton, D., Pritchard, D.: Adapting Bayesian Knowledge Tracing to a massive online course in edX. In: Proceedings of the Sixth International Conference on Educational Data Mining, pp. 137–144. (2013)

    Google Scholar 

  8. Corbett, A., MacLaren, B., Kauffman, L., Wagner, A., Jones, E.A.: Cognitive tutor for genetics problem solving: learning gains and student modeling. J. Educ. Comput. Res. 42(2), 219–239 (2010)

    Article  Google Scholar 

  9. Gong, Y., Beck, J., Heffernan, N.: Comparing knowledge tracing and performance factor analysis by using multiple model fitting. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS2010 Intelligent Tutoring Systems. LNCS, vol. 6094, pp. 35–44. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Koedinger, K., Corbett, A., Perfetti, C.: The knowledge-learning-instruction (KLI) framework: bridging the science-practice chasm to enhance robust student learning. Cogn. Sci. 36(5), 757–798 (2012)

    Article  Google Scholar 

  11. Lee, J., Brunskill, E.: The impact of individualizing student models on necessary practice opportunities. In: Yacef, K., Zaiane, O., Hershkovitz, A., Yudelson, M., Stamper, J. (eds.) EDM2012 Proceedings of the 5th International Conference on International Educational Data Mining Society, pp. 118–125 (2012)

    Google Scholar 

  12. Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a Bayesian networks implementation of knowledge tracing. In: Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13470-8_24

    Chapter  Google Scholar 

  13. Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian knowledge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 171–180. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39112-5_18

    Chapter  Google Scholar 

  14. Eagle, M., Corbett, A., Stamper, J., McLaren, B., Wagner, A., MacLaren, B., Mitchell, A.: Estimating individual differences for student modeling in intelligent tutors from reading and pretest data. In: Micarelli, A., Stamper, J., Panourgia, K. (eds.) Intelligent Tutoring Systems: 13th International Conference Proceedings, pp. 133–143. Springer, New York (2016)

    Google Scholar 

  15. Eagle, M., Corbett, A., Stamper, J., McLaren, B., Baker, R., Wagner, A., MacLaren, B., Mitchell, A.: Predicting individual differences for learner modeling in intelligent tutors from previous learner activities. In: Aroyo, L., D’Mello, S., Vassileva, J., Blustein, J. (eds.) Proceedings UMAP 2016, pp. 55–63. Association for Computing Machinery, New York (2016)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation via the grant “Knowing What Students Know: Using Education Data Mining to Predict Robust STEM Learning”, award number DRL1420609.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Eagle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Eagle, M. et al. (2017). Exploring Learner Model Differences Between Students. In: André, E., Baker, R., Hu, X., Rodrigo, M., du Boulay, B. (eds) Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science(), vol 10331. Springer, Cham. https://doi.org/10.1007/978-3-319-61425-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61425-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61424-3

  • Online ISBN: 978-3-319-61425-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics