Cardiopulmonary Resuscitation Devices: Preliminary Analysis | SpringerLink
Skip to main content

Cardiopulmonary Resuscitation Devices: Preliminary Analysis

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2017)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 49))

Included in the following conference series:

Abstract

This work is devoted to monitor and trace a preliminary representation of the set of devices designed to take part to resuscitation process for patients subjected to a cardiac arrest. The resuscitation procedure is well defined and reviewed by the scientific community and different devices are present in literature and are adopted on patients. A standard definition of the characteristics for these device is not present and their efficacy is controversial in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 42899
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, Kudenchuk PJ, Ornato JP, McNally B, Silvers SM, Passman RS, White RD, Hess EP, Tang W, Davis D, Sinz E, Morrison LJ (2010) Part 8: adult advanced cardiovascular life support: 2010 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122(18 Suppl 3):S729–S767. doi:10.1161/CIRCULATIONAHA.110.970988

    Article  Google Scholar 

  2. Kleinman ME, Brennan EE, Goldberger ZD, Swor RA, Terry M, Bobrow BJ, Gazmuri RJ, Travers AH, Rea T (2015) Part 5: adult basic life support and cardiopulmonary resuscitation quality: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132(18 Suppl 2):S414–S435. doi:10.1161/CIR.0000000000000259

    Article  Google Scholar 

  3. Yu T, Weil MH, Tang W, Sun S, Klouche K, Povoas H, Bisera J (2002) Adverse outcomes of interrupted precordial compression during automated defibrillation. Circulation 106(3):368–372

    Article  Google Scholar 

  4. Hightower D, Thomas SH, Stone CK, Dunn K, March JA (1995) Decay in quality of closed-chest compressions over time. Ann Emerg Med 26(3):300–303

    Article  Google Scholar 

  5. International Liaison Committee on R (2005) 2005 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Part 2: adult basic life support. Resuscitation 67(2–3):187–201. doi:10.1016/j.resuscitation.2005.09.016

    Google Scholar 

  6. Abella BS, Sandbo N, Vassilatos P, Alvarado JP, O’Hearn N, Wigder HN, Hoffman P, Tynus K, Vanden Hoek TL, Becker LB (2005) Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 111(4):428–434. doi:10.1161/01.CIR.0000153811.84257.59

    Article  Google Scholar 

  7. Ashton A, McCluskey A, Gwinnutt CL, Keenan AM (2002) Effect of rescuer fatigue on performance of continuous external chest compressions over 3 min. Resuscitation 55(2):151–155

    Article  Google Scholar 

  8. Ochoa FJ, Ramalle-Gomara E, Lisa V, Saralegui I (1998) The effect of rescuer fatigue on the quality of chest compressions. Resuscitation 37(3):149–152

    Article  Google Scholar 

  9. McDonald CH, Heggie J, Jones CM, Thorne CJ, Hulme J (2013) Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performance. Emerg Med J EMJ 30(8):623–627. doi:10.1136/emermed-2012-201610

    Article  Google Scholar 

  10. Leary M, Abella BS (2008) The challenge of CPR quality: improvement in the real world. Resuscitation 77(1):1–3. doi:10.1016/j.resuscitation.2008.02.005

    Article  Google Scholar 

  11. Eftestol T, Sunde K, Steen PA (2002) Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation 105(19):2270–2273

    Article  Google Scholar 

  12. Bankman IN, Gruben KG, Halperin HR, Popel AS, Guerci AD, Tsitlik JE (1990) Identification of dynamic mechanical parameters of the human chest during manual cardiopulmonary resuscitation. IEEE Trans Biomed Eng 37(2):211–217. doi:10.1109/10.46262

    Article  Google Scholar 

  13. Gruben KG, Guerci AD, Halperin HR, Popel AS, Tsitlik JE (1993) Sternal force-displacement relationship during cardiopulmonary resuscitation. J Biomech Eng 115(2):195–201

    Article  Google Scholar 

  14. Arbogast KB, Maltese MR, Nadkarni VM, Steen PA, Nysaether JB (2006) Anterior-posterior thoracic force-deflection characteristics measured during cardiopulmonary resuscitation: comparison to post-mortem human subject data. Stapp Car Crash J 50:131–145

    Google Scholar 

  15. Nysæther JB, Dorph E, Rafoss I, Steen PA (2008) Manikins with human-like chest properties - a new tool for chest compression research. IEEE Trans Biomed Eng 55(11):2643–2650. doi:10.1109/TBME.2008.2001289

    Article  Google Scholar 

  16. Boe JM, Babbs CF (1999) Mechanics of cardiopulmonary resuscitation performed with the patient on a soft bed vs a hard surface. Acad Emerg Med 6(7):754–757. doi:10.1111/j.1553-2712.1999.tb00449.x

    Article  Google Scholar 

  17. Dellimore KH, Scheffer C (2013) A modeling approach to the effects of force guided versus depth guided compression during cardiopulmonary resuscitation on different chests and back support surfaces. Resuscitation 84(6):837–842. doi:10.1016/j.resuscitation.2012.11.027

    Article  Google Scholar 

  18. Frascone RJ, Wayne MA, Swor RA, Mahoney BD, Domeier RM, Olinger ML, Tupper DE, Setum CM, Burkhart N, Klann L, Salzman JG, Wewerka SS, Yannopoulos D, Lurie KG, O’Neil BJ, Holcomb RG, Aufderheide TP (2013) Treatment of non-traumatic out-of-hospital cardiac arrest with active compression decompression cardiopulmonary resuscitation plus an impedance threshold device. Resuscitation 84(9):1214–1222. doi:10.1016/j.resuscitation.2013.05.002

    Article  Google Scholar 

  19. Aufderheide TP, Frascone RJ, Wayne MA, Mahoney BD, Swor RA, Domeier RM, Olinger ML, Holcomb RG, Tupper DE, Yannopoulos D, Lurie KG (2011) Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet 377(9762):301–311. doi:10.1016/s0140-6736(10)62103-4

    Article  Google Scholar 

  20. Zanetti EM, Franceschini G, Audenino AL (2014) Rider-handlebar injury in two-wheel frontal collisions. J Mech Behav Biomed Mater 33(1):84–92. doi:10.1016/j.jmbbm.2013.01.011

    Article  Google Scholar 

  21. Babbs CF (1999) CPR techniques that combine chest and abdominal compression and decompression: hemodynamic insights from a spreadsheet model. Circulation 100(21):2146–2152

    Article  Google Scholar 

  22. Havel C, Berzlanovich A, Sterz F, Domanovits H, Herkner H, Zeiner A, Behringer W, Laggner AN (2008) Safety, feasibility, and hemodynamic and blood flow effects of active compression-decompression of thorax and abdomen in patients with cardiac arrest. Crit Care Med 36(6):1832–1837. doi:10.1097/CCM.0b013e3181760be0

    Article  Google Scholar 

  23. Jung E, Lenhart S, Protopopescu V, Babbs C (2008) Optimal control applied to a thoraco-abdominal CPR model. Math Med Biology J IMA 25(2):157–170. doi:10.1093/imammb/dqn009

    Article  MATH  Google Scholar 

  24. Babbs CF (2006) Biophysics of cardiopulmonary resuscitation with periodic z-axis acceleration or abdominal compression at aortic resonant frequencies. Resuscitation 69(3):455–469. doi:10.1016/j.resuscitation.2005.09.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Borboni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Adamini, R. et al. (2018). Cardiopulmonary Resuscitation Devices: Preliminary Analysis. In: Ferraresi, C., Quaglia, G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61276-8_94

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61275-1

  • Online ISBN: 978-3-319-61276-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics