Abstract
This paper presents a methodology for transferring different motion style behaviors to virtual characters. Instead of learning the differences between two motion styles and then synthesizing the new motion, the presented methodology assigns to the style transformation the motion’s distribution transformation process. Specifically, in this paper, the joint angle values of motion are considered as a three-dimensional stochastic variable and as a set of samples respectively. Thus, the correlation between three components can be computed by the covariance. The presented method imports covariance between three components of joint angle values, while calculating the mean along each of the three axes. Then, by decomposing the covariance matrix using the singular value decomposition (SVD) algorithm, it is possible to retrieve a rotation matrix. For fitting the motion style of an input to a reference motion style, the joint angle orientation of the input motion is scaled, rotated and transformed to the reference style motion, therefore enabling the motion transfer process. The results obtained from such a methodology indicate that quite reasonable motion sequences can be synthesized while keeping the required style content.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gleicher, M.: Retargetting motion to new characters. In: Annual Conference on Computer Graphics and Interactive Techniques, pp. 33–42 (1998)
Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans. Graph. 24(3), 1062–1070 (2005)
Kovar, L., Gleicher, M.: Flexible automatic motion blending with registration curves. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 214–224 (2003)
Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. 21(3), 483–490 (2002)
Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002)
Lee, J., Chai, J., Reitsma, P.S., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21(3), 491–500 (2002)
Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. ACM Trans. Graph. 26(3), 106 (2007)
van Basten, B.J., Peeters, P.W.A.M., Egges, A.: The step space: example-based footprint-driven motion synthesis. Comput. Animat. Virtual Worlds 21(3–4), 433–441 (2010)
Mousas, C., Newbury, P., Anagnostopoulos, C.: Footprint-driven locomotion composition. Int. J. Comput. Graph. Animat. 4(4), 27–42 (2014)
Mousas, C., Newbury, P., Anagnostopoulos, C.: Measuring the steps: generating action transitions between locomotion behaviours. In: International Conference on Computer Games: AI, Animation, Mobile, Interactive Multimedia, Educational & Serious Games, pp. 31–35 (2013)
Chien, Y.-R., Liu, J.-S.: Learning the stylistic similarity between human motions. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 170–179. Springer, Heidelberg (2006). doi:10.1007/11919476_18
Urtasun, R., Glardon, R., Boulic, R., Thalmann, D., Fua, P.: Style-based motion synthesis. Comput. Graph. Forum 23(4), 799–812 (2004)
Ma, X., Le, B.H., Deng, Z.: Style learning and transferring for facial animation editing. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 123–132 (2009)
Tilmanne, J., Moinet, A., Dutoit, T.: Stylistic gait synthesis based on hidden markov models. EURASIP J. Adv. Sig. Process. 1, 1–14 (2012)
Brand, M., Hertzmann, A.: Style machines. In: 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 183–192 (2000)
Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and adverbs: multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18(5), 32–40 (1998)
Song, J., Choi, B., Seol, Y., Noh, J.: Characteristic facial retargeting. Comput. Animat. Virtual Worlds 22(2–3), 187–194 (2011)
Cao, Y., Faloutsos, P., Pighin, F.: Unsupervised learning for speech motion editing. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 225–231 (2003)
Shapiro, A., Cao, Y., Faloutsos, P.: Style components. In: Graphics Interface, pp. 33–39 (2006)
Torresani, L., Hackney, R., Bregler, C.: Learning motion style synthesis from perceptual observations. In: Advances in Neural Information Processing Systems, pp. 1393–1400 (2007)
Liu, C., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24(3), 1071–1081 (2005)
Elgammal, A., Lee, C.: Separating style and content on a nonlinear manifold. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–485 (2004)
Mousas, C., Newbury, P., Anagnostopoulos, C.N.: Evaluating the covariance matrix constraints for data-driven statistical human motion reconstruction. In: Spring Conference on Computer Graphics, pp. 99–106 (2014)
Mousas, C., Newbury, P., Anagnostopoulos, C.-N.: Data-driven motion reconstruction using local regression models. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2014. IAICT, vol. 436, pp. 364–374. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44654-6_36
Mousas, C., Newbury, P., Anagnostopoulos, C.-N.: Efficient hand-over motion reconstruction. In: International Conference on Computer Graphics, Visualization and Computer Vision, pp. 111–120 (2014)
Hsu, E., Pulli, K., Popović, J.: Style translation for human motion. ACM Trans. Graph. 24(3), 1082–1089 (2005)
Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Trans. Graph. 23(3), 522–531 (2004)
Wang, J.M., Fleet, D.J., Hertzmann, A.: Multifactor Gaussian process models for style-content separation. In: International Conference on Machine learning, pp. 975–982 (2007)
Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23(3), 559–568 (2004)
Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure animation. In: Annual Conference on Computer Graphics and Interactive Techniques, pp. 91–96 (1995)
Bruderlin, A., Williams, L.: Motion signal processing. In: Annual Conference on Computer Graphics and Interactive Techniques, pp. 97–104 (1995)
Perlin, K.: Real time responsive animation with personality. IEEE Trans. Vis. Comput. Graph. 1(1), 5–15 (1995)
Evans, L.C.: Partial differential equations and monge-kantorovich mass transfer. In: Current Developments in Mathematics, pp. 65–126 (1999)
Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Mathe. 177(2), 113–161 (1996)
Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Society (2003)
Konstantinides, K., Yao, K.: Statistical analysis of effective singular values in matrix rank determinatio. IEEE Trans. Acoust. Speech Sig. Process. 36(5), 757–763 (1988)
Lee, L.: Gait analysis for classification. Ph.d. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2002)
Carnegie Mellon University, Motion capture database. http://mocap.cs.cmu.edu/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Here the definition of the components used in Eq. 2 is presented. Specifically, the matrices of \(T_{ref}\), \(T_{in}\), \(R_{ref}\), \(R_{in}\), \(S_{ref}\), and \(S_{in}\) denote the translation, rotation and scaling derived from the reference style and the input motion respectively. They are solved as:
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kilias, A., Mousas, C. (2017). Motion Style Transfer in Correlated Motion Spaces. In: De Paolis, L., Bourdot, P., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2017. Lecture Notes in Computer Science(), vol 10324. Springer, Cham. https://doi.org/10.1007/978-3-319-60922-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-60922-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60921-8
Online ISBN: 978-3-319-60922-5
eBook Packages: Computer ScienceComputer Science (R0)