Abstract
Balázs et al. (Fundamenta Informaticae 141:151–167, 2015) proposed a measure of directional convexity of binary images based on the geometric definition of shape convexity. The measure is useful for various applications of digital image processing and pattern recognition, especially in binary tomography. Here we provide an improvement of this measure making it to follow better the intuitive concept of geometric convexity and to be more suitable to distinguish between thick and thin objects.
The research was supported by the NKFIH OTKA [grant number K112998].
Similar content being viewed by others
References
Balázs, P., Brunetti, S.: A measure of Q-convexity. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 219–230. Springer, Cham (2016). doi:10.1007/978-3-319-32360-2_17
Balázs, P., Ozsvár, Z., Tasi, T., Nyúl, L.: A measure of directional convexity inspired by binary tomography. Fundam. Informaticae 141(2–3), 151–167 (2015)
Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Medians of polyominoes: a property for reconstruction. Int. J. Imaging Syst. Technol. 9(2–3), 69–77 (1998)
Boxer, L.: Computing deviations from convexity in polygons. Pattern Recognit. Lett. 14(3), 163–167 (1993)
Brunetti, S., Lungo, A.D., Ristoro, F.D., Kuba, A., Nivat, M.: Reconstruction of 4- and 8-connected convex discrete sets from row and column projections. Linear Algebra Appl. 339(1), 37–57 (2001)
Chrobak, M., Durr, C.: Reconstructing hv-convex polyominoes from orthogonal projections. Inf. Process. Lett. 69(6), 283–289 (1999)
Gorelick, L., Veksler, O., Boykov, Y., Nieuwenhuis, C.: Convexity shape prior for segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 675–690. Springer, Cham (2014). doi:10.1007/978-3-319-10602-1_44
Gorelick, L., Veksler, O., Boykov, Y., Nieuwenhuis, C.: Convexity shape prior for binary segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 258–271 (2017)
Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Applied and Numerical Harmonic Analysis. Birkhauser, Baserl (2007)
Latecki, L.J., Lakamper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Underst. 73(3), 441–454 (1999)
Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1501–1512 (2006)
Rosin, P.L., Žunić, J.: Probabilistic convexity measure. IET Image Process. 1(2), 182–188 (2007)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Cengage Learning, Boston (2014)
Stern, H.I.: Polygonal entropy: a convexity measure. Pattern Recognit. Lett. 10(4), 229–235 (1989)
Tasi, T.S., Nyúl, L.G., Balázs, P.: Directional convexity measure for binary tomography. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8259, pp. 9–16. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41827-3_2
Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 923–934 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bodnár, P., Balázs, P. (2017). An Improved Directional Convexity Measure for Binary Images. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-59876-5_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59875-8
Online ISBN: 978-3-319-59876-5
eBook Packages: Computer ScienceComputer Science (R0)