Relevant Kinematic Feature Selection to Support Human Action Recognition in MoCap Data | SpringerLink
Skip to main content

Relevant Kinematic Feature Selection to Support Human Action Recognition in MoCap Data

  • Conference paper
  • First Online:
Biomedical Applications Based on Natural and Artificial Computing (IWINAC 2017)

Abstract

This paper presents a feature selection comparison oriented to human action recognition only with the kinematic features of skeleton representation. For this purpose, three relevance methods are used to rank the contribution of kinematic features for classifying an action is employed. Particularly, the method with the best results includes the supervised information regarding the action to find out a relevant set of features, encoding the most discriminative information. Experimental results are obtained on a well-known public data (MSR Action3D). Results are encouraging to use kernel theory methods to get better kinematic feature selection for each action with a good generalization indistinct to the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kale, G.V., Patil, V.H.: A study of vision based human motion recognition and analysis. IJACI 7(2), 75–92 (2016)

    Google Scholar 

  2. Mandery, C., Plappert, M., Sol, J.B., Asfour, T.: Dimensionality reduction for whole-body human motion recognition. In: 19th International Conference on Information Fusion, FUSION, Heidelberg, Germany, 5–8 July 2016, pp. 355–362 (2016)

    Google Scholar 

  3. Althloothi, S., Mahoor, M.H., Zhang, X., Voyles, R.M.: Human activity recognition using multi-features and multiple kernel learning. Pattern Recogn. 47(5), 1800–1812 (2014)

    Article  Google Scholar 

  4. Li, M., Leung, H., Liu, Z., Zhou, L.: 3D human motion retrieval using graph kernels based on adaptive graph construction. Comput. Graph. Pergamon 54, 104–112 (2016)

    Article  Google Scholar 

  5. Wang, L., Zhao, G., Cheng, L., Pietikainen, M.: Machine Learning for Vision-Based Motion Analysis, 1st edn. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  6. Wei, X.K., Chai, J.: Modeling 3D human poses from uncalibrated monocular images. In: IEEE 12th International Conference on Computer Vision, ICCV, Kyoto, Japan, 27 September–4 October 2009, pp. 1873–1880 (2009)

    Google Scholar 

  7. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshopps 2010, San Francisco, CA, USA, 13–18 June 2010, pp. 9–14 (2010)

    Google Scholar 

  8. Ravet, T., Tilmanne, J., d’Alessandro, N.: Hidden Markov model based real-time motion recognition and following. In: Proceedings of the 2014 International Workshop on Movement, Computing, MOCO 2014, pp. 82–87. ACM, New York (2014)

    Google Scholar 

  9. Jiang, Y., Saxena, A.: Modeling high-dimensional humans for activity anticipation using Gaussian process latent CRFs. In: Robotics: Science and Systems X, University of California, Berkeley, USA, 12–16 July 2014 (2014)

    Google Scholar 

  10. García-Vega, S., Álvarez-Meza, A.M., Castellanos-Domínguez, C.G.: MoCap data segmentation and classification using kernel based multi-channel analysis. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8259, pp. 495–502. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41827-3_62

    Chapter  Google Scholar 

  11. Pulgarin-Giraldo, J.D., Alvarez-Meza, A.M., Melo-Betancourt, L.G., Ramos-Bermudez, S., Castellanos-Dominguez, G.: A similarity indicator for differentiating kinematic performance between qualified tennis players. In: Beltrán-Castañón, C., Nyström, I., Famili, F. (eds.) CIARP 2016. LNCS, vol. 10125, pp. 309–317. Springer, Cham (2017). doi:10.1007/978-3-319-52277-7_38

    Chapter  Google Scholar 

  12. Diaz-Martinez, N.F., Pulgarin-Giraldo, J.D., Vinasco-Isaza, L.E., Agredo, W.: Analysis of the alignment angles and flexion angle in women with patellofemoral pain syndrome. In: Torres, I., Bustamante, J., Sierra, D. (eds.) CLAIB 2016. IFMBE Proceedings. Springer, Singapore (2016)

    Google Scholar 

  13. Yang, X., Tian, Y.: Effective 3D action recognition using eigenjoints. J. Vis. Commun. Image Represent. 25(1), 2–11 (2014)

    Article  MathSciNet  Google Scholar 

  14. Yang, X., Tian, Y.: Eigenjoints-based action recognition using Naïve-Bayes-Nearest-Neighbor. In: CVPR Workshops, pp. 14–19. IEEE Computer Society (2012)

    Google Scholar 

  15. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Sequence of the most informative joints (SMIJ): a new representation for human skeletal action recognition. J. Vis. Commun. Image Represent. 25(1), 24–38 (2014)

    Article  Google Scholar 

  16. Alvarez-Meza, A.M., Velasquez-Martinez, L.F., Castellanos-Dominguez, G.: Time-series discrimination using feature relevance analysis in motor imagery classification. Neurocomputing 151(Part 1), 122–129 (2015)

    Article  Google Scholar 

  17. Brockmeier, A.J., Choi, J.S., Kriminger, E.G., Francis, J.T., Principe, J.C.: Neural decoding with kernel-based metric learning. Neural Comput. 26(6), 1080–1107 (2014)

    Article  MathSciNet  Google Scholar 

  18. Zeng, X., Wang, Q., Zhang, C., Cai, H.: Feature selection based on reliefF and PCA for underwater sound classification. In: Proceedings of 3rd International Conference on Computer Science and Network Technology, pp. 442–445 (2013)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the project number 36075 funded by Universidad Nacional de Colombia sede Manizales, by program “Doctorados Nacionales 2014” number 647 funded by COLCIENCIAS, as well as partial Ph.D. financial support from Universidad Autonoma de Occidente.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Pulgarin-Giraldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pulgarin-Giraldo, J.D., Ruales-Torres, A.A., Alvarez-Meza, A.M., Castellanos-Dominguez, G. (2017). Relevant Kinematic Feature Selection to Support Human Action Recognition in MoCap Data. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(), vol 10338. Springer, Cham. https://doi.org/10.1007/978-3-319-59773-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59773-7_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59772-0

  • Online ISBN: 978-3-319-59773-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics