Human Activity Recognition Using Accelerometer and Photoplethysmographic Signals | SpringerLink
Skip to main content

Human Activity Recognition Using Accelerometer and Photoplethysmographic Signals

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2017 (IDT 2017)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 73))

Included in the following conference series:

  • 1751 Accesses

Abstract

This paper presents an efficient technique for real-time recognition of human activities by using accelerometer and photoplethysmography (PPG) data. It is based on singular value decomposition (SVD) and truncated Karhunen-Loève transform (KLT) for feature extraction and reduction, and Bayesian classification for class recognition. Due to the nature of signals, and being the algorithm independent from the orientation of the inertial sensor, this technique is particularly suitable for implementation in smartwatches in order to both recognize the exercise being performed and improve the motion artifact (MA) removal from PPG signal for accurate heart rate (HR) estimation. In order to demonstrate the validity of this methodology, it has been successfully applied to a database of accelerometer and PPG data derived from four dynamic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 19(9), 1295–1314 (2013)

    Google Scholar 

  2. Bacà, A., Biagetti, G., Camilletti, M., Crippa, P., Falaschetti, L., Orcioni, S., Rossini, L., Tonelli, D., Turchetti, C.: CARMA: a robust motion artifact reduction algorithm for heart rate monitoring from PPG signals. In: 23rd European Signal Processing Conference, pp. 2696–2700, September 2015

    Google Scholar 

  3. Biagetti, G., Crippa, P., Curzi, A., Orcioni, S., Turchetti, C.: A multi-class ECG beat classifier based on the truncated KLT representation. In: UKSim-AMSS 8th European Modelling Symposium on Computer Modelling and Simulation (EMS 2014), pp. 93–98, October 2014

    Google Scholar 

  4. Biagetti, G., Crippa, P., Curzi, A., Orcioni, S., Turchetti, C.: Analysis of the EMG signal during cyclic movements using multicomponent AM-FM decomposition. IEEE J. Biomed. Health Inf. 19(5), 1672–1681 (2015)

    Article  MATH  Google Scholar 

  5. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Artifact reduction in photoplethysmography using Bayesian classification for physical exercise identification. In: Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, Rome, Italy, pp. 467–474, February 2016

    Google Scholar 

  6. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Wireless surface electromyograph and electrocardiograph system on 802.15.4. IEEE Trans. Consum. Electron. 62(3), 258–266 (2016)

    Article  Google Scholar 

  7. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: A rule based framework for smart training using sEMG signal. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) Intelligent Decision Technologies, Smart Innovation, Systems and Technologies, vol. 39, pp. 89–99. Springer, Cham (2015)

    Google Scholar 

  8. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: An efficient technique for real-time human activity classification using accelerometer data. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2016: Proceedings of the 8th KES International Conference on Intelligent Decision Technologies - Part I, pp. 425–434. Springer, Cham (2016)

    Google Scholar 

  9. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Homomorphic deconvolution for MUAP estimation from surface EMG signals. IEEE J. Biomed. Health Inf. 21(2), 328–338 (2017)

    Article  Google Scholar 

  10. Biagetti, G., Crippa, P., Orcioni, S., Turchetti, C.: An analog front-end for combined EMG/ECG wireless sensors. In: Conti, M., Martínez Madrid, N., Seepold, R., Orcioni, S. (eds.) Mobile Networks for Biometric Data Analysis, pp. 215–224. Springer, Cham (2016)

    Chapter  Google Scholar 

  11. Biagetti, G., Crippa, P., Orcioni, S., Turchetti, C.: Surface EMG fatigue analysis by means of homomorphic deconvolution. In: Conti, M., Martínez Madrid, N., Seepold, R., Orcioni, S. (eds.) Mobile Networks for Biometric Data Analysis, pp. 173–188. Springer, Cham (2016)

    Chapter  Google Scholar 

  12. Casson, A.J., Galvez, A.V., Jarchi, D.: Gyroscope vs. accelerometer measurements of motion from wrist PPG during physical exercise. ICT Expr. 2(4), 175–179 (2016)

    Article  Google Scholar 

  13. Catal, C., Tufekci, S., Pirmit, E., Kocabag, G.: On the use of ensemble of classifiers for accelerometer-based activity recognition. Appl. Soft. Comput. 37, 1018–1022 (2015)

    Article  Google Scholar 

  14. Crippa, P., Curzi, A., Falaschetti, L., Turchetti, C.: Multi-class ECG beat classification based on a Gaussian mixture model of Karhunen-Loève transform. Int. J. Simul. Syst. Sci. Technol. 16(1), 2.1–2.10 (2015)

    Google Scholar 

  15. Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: 8th International Conference on Intelligent Environments, pp. 214–221, June 2012

    Google Scholar 

  16. Figueiredo, M.A.F., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

    Article  Google Scholar 

  17. Khan, A., Lee, Y.K., Lee, S., Kim, T.S.: Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: 2010 5th International Conference on Future Information Technology, pp. 1–6, May 2010

    Google Scholar 

  18. Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193–2203 (2013)

    Article  Google Scholar 

  19. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3(1), 72–83 (1995)

    Article  Google Scholar 

  20. Rodriguez-Martin, D., Samà, A., Perez-Lopez, C., Català, A., Cabestany, J., Rodriguez-Molinero, A.: SVM-based posture identification with a single waist-located triaxial accelerometer. Expert Syst. Appl. 40(18), 7203–7211 (2013)

    Article  Google Scholar 

  21. Torres-Huitzil, C., Nuno-Maganda, M.: Robust smartphone-based human activity recognition using a tri-axial accelerometer. In: 2015 IEEE 6th Latin American Symposium on Circuits Systems, pp. 1–4, February 2015

    Google Scholar 

  22. Turchetti, C., Crippa, P., Pirani, M., Biagetti, G.: Representation of nonlinear random transformations by non-Gaussian stochastic neural networks. IEEE Trans. Neural Networks 19(6), 1033–1060 (2008)

    Article  Google Scholar 

  23. Zhang, Z., Pi, Z., Liu, B.: TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans. Biomed. Eng. 62(2), 522–531 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Crippa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C. (2018). Human Activity Recognition Using Accelerometer and Photoplethysmographic Signals. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2017. IDT 2017. Smart Innovation, Systems and Technologies, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-59424-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59424-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59423-1

  • Online ISBN: 978-3-319-59424-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics