Abstract
Data Analytics and derived Data Mining are powerful approaches for the analysis of Big Data. There are a lot of commercial Data Analytics applications enterprises can take advantage of. In the past, many firms were still critical of Data Analytics. Through efforts made in the field of the establishment of process standards, managers might be convinced of Data Analytics advantages. Many small and medium-sized organizations are still exempt from this development. The main reasons are a lack of business prioritization, a lack of (IT) knowledge, and a lack of overview of Data Analytics issues. To reduce that problem, we developed a useful process framework. It resembles with existing frameworks, but is highly simplified and easy to use. To exemplify, how this framework can be put into action by the means of a retail site location analysis, we set up a case study as best practice. There we are focusing on Data Mining because it is the most important domain of Data Analytics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mohanty, H.: Big data: an introduction. In: Bhuyan, P., Chenthati, D., Mohanty, H. (eds.) Big Data: A Primer, pp. 1–28. Springer, New Delhi (2015)
Giudici, P.: Applied Data Mining: Statistical Methods for Business and Industry. Wiley, Chichester (2005)
Coleman, S., et al.: How Can SMEs Benefit from Big Data? Challenges and a Path Forward. Qual. Reliab. Eng. Int. 32, 2151–2164 (2016)
IDC Digital Universe. https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm. Accessed 6 Dec 2016
Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “Big Data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)
Härting, R., Schmidt, R., Möhring, M.: Business intelligence & big data: Eine strategische Waffe für KMU? In: Härting, R. (ed.) Big Data – Daten strategisch nutzen, pp. 11–29. Books on Demand, Norderstedt (2014)
McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J., Barton, D.: Big data. The management revolution. Harvard Bus. Rev. 90(10), 61–67 (2012)
Schmidt, R., Möhring M., Maier, S., Pietsch, J., Härting, R.: Big data as strategic enabler – insights from central European enterprises. In: Abramowicz, W., Kokkinaki, A. (eds.) 17th International Conference on Business Information Systems, Lecture Notes in Business Information Processing, pp. 50–60. Springer, Cham (2014)
Hui, S.C., Jha, G.: Data mining for customer service support. Inf. Manage. 38, 1–13 (2000)
Chen, L.-F., Tsai, C.-T.: Data mining framework based on rough set theory to improve location selection decisions: a case study of a restaurant chain. Tourism Manage. 53, 197–206 (2016)
Watterson, K.: Datamining poised to go mainstream. http://www.datamation.com/datbus/article.php/616511/Datamining-poised-to-go-mainstream.htm. Accessed 6 Dec 2016
Ghaderi, H., Fei, J., Shakeizadeh, M.H.: Data mining practice in SMEs: a customer relationship management perspective. In: ANZAM, pp. 1–12 (2013)
Seufert, A.: Entwicklungsstand, Potentiale und zukünftige Herausforderungen von Big Data – Ergebnisse einer empirischen Studie. HMD – Praxis der Wirtschaftsinformatik 51, 412–423 (2014)
European Commission. http://cordis.europa.eu/result/rcn/93077_en.html. Accessed 6 Dec 2016
Commission, E.: User guide to the SME Definition. Publications Office of the European Union, Luxemburg (2015)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. Am. Assoc. Artif. Intell. 17(3), 37–54 (1996)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996)
Deshpande, B., Kotu, V.: Predictive Analytics and Data Mining. Concepts and Practice with RapidMiner. Morgan Kaufmann, Amsterdam (2015)
Mitra, S., Pal, S.K., Mitra, P.: Data mining in soft computing framework: a survey. IEEE Trans. Neural Networks 13(1), 3–14 (2002)
Han, J., Kamber, M.: Data Mining. Concepts and Techniques. Morgan Kaufmann, Amsterdam (2006)
Seng, J.-L., Chen, T.C.: An analytic approach to select data mining for business decision. Expert Syst. Appl. 37, 8042–8057 (2010)
Ahmed, S.: Applications of data mining in retail business. In: International Conference on Information Technology: Coding and Computing (ITCC 2004), vol. 2, pp. 455–459 (2004)
Coleman, S.Y.: Data-mining opportunities for small and medium enterprises with official statistics in the UK. J. Official Stat. 32(4), 849–865 (2016)
Davenport, T.H., Patil, D.J.: Data scientist: the sexiest job of the 21st century. Harvard Bus. Rev. 90(10), 70–76 (2012)
Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. ACM SIGKDD Explor. Newslett. 14(2), 1–5 (2013)
Chapman, P. et al.: ftp://ftp.software.ibm.com/software/analytics/spss/support/Modeler/Documentation/14/UserManual/CRISP-DM.pdf. Accessed 15 Dec 2016
Kurgan, L.A., Musilek, P.: A survey of knowledge discovery and data mining process models. Knowl. Eng. Rev. 21(1), 1–21 (2006)
Azevedo, A., Santos, M.F.: KDD, SEMMA and CRISP-DM: a parallel overview. In: Proceedings of the IADIS European Conference on Data Mining, pp. 182–185 (2008)
SAS Institute Inc. https://web.archive.org/web/20120308165638/http://www.sas.com/offices/europe/uk/technologies/analytics/datamining/miner/semma.html/. Accessed 17 Dec 2016
Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., Zhou, Z.H.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)
Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)
Gürsel, M., Tölke, O., von dem Bussche, G.: Branchenstudie Tankstellenmarkt Deutschland 2015. Scope Investor Services, Berlin (2016)
Roig-Tierno, N., et al.: The retail site location decision process using GIS and the analytical hierarchy process. Appl. Geogr. 40, 191–198 (2013)
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Amsterdam (2016)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Dittert, M., Härting, RC., Reichstein, C., Bayer, C. (2018). A Data Analytics Framework for Business in Small and Medium-Sized Organizations. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2017. IDT 2017. Smart Innovation, Systems and Technologies, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-59424-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-59424-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59423-1
Online ISBN: 978-3-319-59424-8
eBook Packages: EngineeringEngineering (R0)