Fuzzy ARTMAP with Binary Relevance for Multi-label Classification | SpringerLink
Skip to main content

Fuzzy ARTMAP with Binary Relevance for Multi-label Classification

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2017 (IDT 2017)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 73))

Included in the following conference series:

Abstract

In this paper, we propose a modified supervised adaptive resonance theory neural network, namely Fuzzy ARTMAP (FAM), to undertake multi-label data classification tasks. FAM is integrated with the binary relevance (BR) technique to form BR-FAM. The effectiveness of BR-FAM is evaluated using two benchmark multi-label data classification problems. Its results are compared with those other methods in the literature. The performance of BR-FAM is encouraging, which indicate the potential of FAM-based models for handling multi-label data classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37, 1757–1771 (2004)

    Article  Google Scholar 

  2. Tamaazousti, Y., Le Borgne, H., Popescu, A.: Constrained local enhancement of semantic features by content-based sparsity. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, ICME 2016, pp. 119–126. ACM, New York (2016)

    Google Scholar 

  3. Li, X., Huo, Y., Jin, Q., Xu., J.: Detecting violence in video using subclasses. In: Proceedings of the 2016 ACM on Multimedia Conference, MM 2016, pp. 586–590. ACM, Amsterdam (2016)

    Google Scholar 

  4. Chávez-Martínez, G., Ruiz-Correa, S., Gatica-Perez, D.: Happy and agreeable?: multi-label classification of impressions in social video. In: Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, MUM 2015, pp. 109–120. ACM, Austria (2015)

    Google Scholar 

  5. Lin, Y.-C., Yang, Y.-H., Chen, Homer H.: Exploiting online music tags for music emotion classification. ACM Trans. Multimedia Comput. Commun. Appl. 7 s, Article 26 (2011)

    Google Scholar 

  6. Yu, G., Rangwala, H., Domeniconi, C., Zhang, G., Yu, Z.: Protein Function Prediction with Incomplete Annotations. IEEE/ACM Trans. Comput. Biol. Bioinf. 11, 579–591 (2014)

    Article  Google Scholar 

  7. Zhang, M.-L., Zhou, Z.-H.: ML-kNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40, 2038–2048 (2007)

    Article  MATH  Google Scholar 

  8. Xu, J.: An extended one-versus-rest support vector machine for multi-label classification. Neurocomputing 74, 3114–3124 (2011)

    Article  Google Scholar 

  9. Xu, J.: Multi-label core vector machine with a zero label. Pattern Recogn. 47, 2542–2557 (2014)

    Article  MATH  Google Scholar 

  10. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy artmap: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. Neural Netw. 3, 698–713 (1992)

    Article  Google Scholar 

  11. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. Lecture Notes in Artificial Intelligence 3056, 22–30 (2004)

    Google Scholar 

  12. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 3, 1–13 (2007)

    Article  Google Scholar 

  13. Hüllermeier, E., Fürnkranz, J., Cheng, W., Bringer, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172, 1897–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fürnkranz, J., Hüllermeier, E., Mencia, L., Brinker, K.: Multi-label classification via calibrated label ranking. Mach. Learn. 73, 133–153 (2008)

    Article  Google Scholar 

  15. Cherman, E.A., Monard, M.C., Metz, J.: Multi-label problem transformation methods: a case study. CLEI Electron. J. 14, 4 (2011)

    Google Scholar 

  16. Tanaka, E.A., Nozawa, S.R., Macedo, A.A., Baranauskas, J.A.: A multi-label approach using binary relevance and decision tree applied to functional genomics. J. Biomed. Inf. 53, 85–95 (2015)

    Article  Google Scholar 

  17. Chou, S., Hsu, C.-L.: MMDT: a multi-valued and multi-labeled decision tree classifier for data mining. Expert Syst. Appl. 28, 799–812 (2005)

    Article  Google Scholar 

  18. Wu, Q., Ye, Y., Zhang, H. Chow, Tommy W.S., Ho, S.-S.: ML-TREE: a tree-structure-based approach to multilabel learning. IEEE Trans. Neural Netw. Learn. Syst. 26, 430–443 (2015)

    Google Scholar 

  19. Chen, W.-J., Shao, Y.-H., Li, C.-N., Deng, N.-Y.: MLTSVM: a novel twin support vector machine to multi-label. Learning 52, 61–74 (2016)

    Google Scholar 

  20. Zhang, M.-L., Zhou, Z.-H.: Multi-label neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18, 1338–1351 (2006)

    Article  Google Scholar 

  21. Chen, Z., Chi, Z., Fu, H., Feng, D.: Multi-instance multi-label image classification: a neural approach. Neurocomputing 99, 298–306 (2013)

    Article  Google Scholar 

  22. van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)

    MATH  Google Scholar 

  23. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23, 1079–1089 (2011)

    Article  Google Scholar 

  24. Yang, Y.: An evaluation of statistical approaches to text categorization. J. Inf. Retrieval 1, 78–88 (1999)

    Article  Google Scholar 

  25. Mulan: a Java library for multi-label learning. http://mulan.sourceforge.net/datasets-mlc.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shing Chiang Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Yuan, L.X., Tan, S.C., Goh, P.Y., Lim, C.P., Watada, J. (2018). Fuzzy ARTMAP with Binary Relevance for Multi-label Classification. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2017. IDT 2017. Smart Innovation, Systems and Technologies, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-59424-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59424-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59423-1

  • Online ISBN: 978-3-319-59424-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics