Abstract
The paper addresses the medical challenge of interpreting histopathological slides through expert-independent automated learning with implicit feature determination and direct grading establishment. Deep convolutional neural networks model the image collection and are able to give a timely and accurate support for pathologists, who are more than often burdened by large amounts of data to be processed. The paradigm is however known to be problem-dependent in variable setting, therefore automatic parametrization is also considered. Due to the large necessary runtime, this is restricted to kernel size optimization in each convolutional layer. As processing time still remains considerable for five variables, a surrogate model is further constructed. Results support the use of the deep learning methodology for computational assistance in cancer grading from histopathological images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
IMEDIATREAT Project, https://sites.google.com/site/imediatreat/.
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/. Software available from tensorflow.org
Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)
Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1207–1216 (2016)
Bartz-Beielstein, T., Preuss, M.: The future of experimental research. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, P., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 17–49. Springer, Heidelberg (2010)
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_51
Czibula, G., Crişan, G.C., Pintea, C.M., Czibula, I.G.: Soft computing approaches on the bandwidth problem. Informatica 24(2), 169–180 (2013). http://dl.acm.org/citation.cfm?id=2773202.2773203
Daher, N.M.: Deep learning in medical imaging: the not-so-near future. Diagnostic Imaging. http://www.diagnosticimaging.com/pacs-and-informatics/deep-learning-medical-imaging-not-so-near-future
Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)
Gorunescu, F., Belciug, S.: Boosting backpropagation algorithm by stimulus-sampling: application in computer-aided medical diagnosis. J. Biomed. Inform. 63, 74–81 (2016)
Gorunescu, F., Belciug, S., Gorunescu, M., Badea, R.: Intelligent decision-making for liver fibrosis stadialization based on tandem feature selection and evolutionary-driven neural network. Expert Syst. Appl. 39(17), 12824–12832 (2012). http://dx.doi.org/10.1016/j.eswa.2012.05.011
Iantovics, B.L.: Agent-based medical diagnosis systems. Comput. Inform. 27(4), 593–625 (2012). http://www.cai.sk/ojs/index.php/cai/article/view/234
Iliescu, D.G., Dragusin, R.C., Cernea, D., Patru, C.L., Florea, M., Tudorache, S.: Intrapartum ultrasound - an integrated approach for best prognosis. Med. Ultrasonography 19(1), 932 (2017)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), pp. 448–456 (2015)
Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)
Karpathy, A.: Stanford university cs231n: convolutional neural networks for visual recognition. http://cs231n.github.io/convolutional-networks/
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)
Kramer, O.: Genetic Algorithm Essentials. SCI, vol. 679. Springer, Cham (2017). doi:10.1007/978-3-319-52156-5
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1106–1114 (2012)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Bäck, T., Dijkstra, J., Reiber, J.H.C.: Optimizing a medical image analysis system using mixed-integer evolution strategies. In: Cagnoni, S. (eds.) Evolutionary Image Analysis and Signal Processing. SCI, vol. 213, pp. 91–112. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01636-3_6
McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979). http://www.jstor.org/stable/1268522
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: e1071: Misc Functions of the Department of Statistics, TU Wien (2015)
Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in mri images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)
Riera-Ledesma, J., Salazar-Gonzlez, J.J.: A heuristic approach for the travelling purchaser problem. Eur. J. Oper. Res. 162(1), 142–152 (2005). http://www.sciencedirect.com/science/article/pii/S037722170300821X. Logistics: From Theory to Application
Roth, H.R., Lee, C.T., Shin, H.C., Seff, A., Kim, L., Yao, J., Lu, L., Summers, R.M.: Anatomy-specific classification of medical images using deep convolutional nets. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 101–104 (2015)
Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1–37 (2013)
Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R.J., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Stoean, C., Stoean, R., Sandita, A., Mesina, C., Ciobanu, D., Gruia, C.L.: Investigation on parameter effect for semi-automatic contour detection in histopathological image processing. In: 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 445–451 (2015)
Stoean, C.: In search of the optimal set of indicators when classifying histopathological images. In: 2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 449–455 (2016)
Stoean, C., Preuss, M., Stoean, R.: EA-based parameter tuning of multimodal optimization performance by means of different surrogate models. In: Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 1063–1070. ACM (2013)
Stoean, C., Stoean, R., Sandita, A., Ciobanu, D., Mesina, C., Gruia, C.L.: SVM-based cancer grading from histopathological images using morphological and topological features of glands and nuclei. In: Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) Intelligent Interactive Multimedia Systems and Services 2016. SIST, vol. 55, pp. 145–155. Springer, Cham (2016). doi:10.1007/978-3-319-39345-2_13
Stoean, C., Stoean, R., Sandita, A., Mesina, C., Gruia, C.L., Ciobanu, D.: Evolutionary search for an accurate contour segmentation in histopathological images. In: The ACM Genetic and Evolutionary Computation Conference Companion (GECCO 2015), pp. 1491–1492 (2015)
Therneau, T., Atkinson, B., Ripley, B.: rpart: Recursive Partitioning and Regression Trees (2015)
Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, pp. 4:1–4:5. ACM (2015)
Zaharie, D., Lungeanu, D., Zamfirache, F.: Interactive search of rules in medical data using multiobjective evolutionary algorithms. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2008, pp. 2065–2072. ACM, New York (2008). http://doi.acm.org/10.1145/1388969.1389023
Acknowledgments
The second and third authors acknowledge the support of the research grant no. 26/2014, IMEDIATREAT - Intelligent Medical Information System for the Diagnosis and Monitoring of the Treatment of Patients with Colorectal Neoplasm -of the Romanian Ministry of National Education - Research and the Executive Agency for Higher Education Research Development and Innovation Funding.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Postavaru, S., Stoean, R., Stoean, C., Caparros, G.J. (2017). Adaptation of Deep Convolutional Neural Networks for Cancer Grading from Histopathological Images. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-59147-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59146-9
Online ISBN: 978-3-319-59147-6
eBook Packages: Computer ScienceComputer Science (R0)