Abstract
Many computational problems in machine learning can be represented by separable matrix factorization models. In a geometric approach, linear separability means that the whole set of data points can be modeled by a convex combination of a few data points, referred to as the extreme rays. The aim of the XRAY algorithm is to find the extreme rays of the conic hull, generated by observed nonnegative vectors. In this paper, we extend the concept of this algorithm to a multi-linear data representation. Instead of searching into a vector space, we attempt to find the equivalent extreme rays in a space of tensors, under the linear separability assumption of subtensors, ordered along the selected mode. The proposed multi-way XRAY algorithm has been applied to Blind Source Separation (BSS) of natural images. The experiments demonstrate that if multi-way observations are at least one-mode linearly separable, the proposed algorithms can estimate the latent factors with high Signal-to-Interference (SIR) performance. The discussed methods may also be useful for analyzing video sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The inner product \(<{\mathcal {A}}, \; {\mathcal {B}}>\) between the tensors \({\mathcal {A}} = [a_{i_1,\ldots ,i_N}] \in {\mathbb {R}}^{I_1 \times \ldots \times I_N}\) and \({\mathcal {B}} = [b_{i_1,\ldots ,i_N}] \in {\mathbb {R}}^{I_1 \times \ldots \times I_N}\) is defined as follows: \(<{\mathcal {A}}, \; {\mathcal {B}}> = \sum _{i_1 = 1}^{I_1} \cdots \sum _{i_N = 1}^{I_N} a_{i_1,\ldots ,i_N} b_{i_1,\ldots ,i_N}\).
References
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)
Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Hoboken (2009)
Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377 (2009)
Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: Proceedings of NIPS, vol. 16. MIT Press (2004)
Wang, Y.X., Zhang, Y.J.: Nonnegative matrix factorization: a comprehensive review. IEEE Trans. Knowl. Data Eng. 25(6), 1336–1353 (2013)
Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 45–55 (2010)
Thurau, C., Kersting, K., Bauckhage, C.: Convex non-negative matrix factorization in the wild. In: Proceedings of 9th IEEE International Conference on Data Mining, ICDM 2009, Washington, D.C., USA, pp. 523–532 (2009)
Esser, E., Möller, M., Osher, S., Sapiro, G., Xin, J.: A convex model for nonnegative matrix factorization and dimensionality reduction on physical space. IEEE Trans. Image Process. 21(7), 3239–3252 (2012)
Arora, S., Ge, R., Kannan, R., Moitra, A.: Computing a nonnegative matrix factorization - provably. SIAM J. Comput. 45(4), 1582–1611 (2016)
Kumar, A., Sindhwani, V., Kambadur, P.: Fast conical hull algorithms for near-separable non-negative matrix factorization. In: Proceedings of the 30th International Conference on Machine Learning (ICML), Atlanta, Georgia, USA, vol. 28, pp. 231–239 (2013)
Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 5(2), 354–379 (2012)
Chan, T.H., Ma, W.K., Ambikapathi, A.M., Chi, C.Y.: A simplex volume maximization framework for hyperspectral endmember extraction. IEEE Trans. Geosci. Remote Sens. 49(11), 4177–4193 (2011)
Gillis, N.: Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM J. Imaging Sci. 7(2), 1420–1450 (2014)
Arora, S., Ge, R., Halpern, Y., Mimno, D.M., Moitra, A., Sontag, D., Wu, Y., Zhu, M.: A practical algorithm for topic modeling with provable guarantees. In: Proceedings of ICML. JMLR Workshop and Conference Proceedings, vol. 28, pp. 280–288 (2013). www.JMLR.org
Ding, W., Rohban, M.H., Ishwar, P., Saligrama, V.: Topic discovery through data dependent and random projections. In: Proceedings of ICML, vol. 28, pp. 471–479 (2013)
Bittorf, V., Recht, B., Re, C., Tropp, J.: Factoring nonnegative matrices with linear programs. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1214–1222 (2012)
Gillis, N., Luce, R.: Robust near-separable nonnegative matrix factorization using linear optimization. J. Mach. Learn. Res. 15, 1249–1280 (2014)
Huang, K., Sidiropoulos, N., Swami, A.: Non-negative matrix factorization revisited: uniqueness and algorithm for symmetric decomposition. IEEE Trans. Sig. Process. 62(1), 211–224 (2014)
Ouedraogo, W.S.B., Souloumiac, A., Jaïdane, M., Jutten, C.: Simplicial cone shrinking algorithm for unmixing nonnegative sources. In: ICASSP, pp. 2405–2408. IEEE (2012)
Zdunek, R.: Initialization of nonnegative matrix factorization with vertices of convex polytope. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7267, pp. 448–455. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_52
Araujo, M.C.U., Saldanha, T.C.B., Galvao, R.K.H., Yoneyama, T., Chame, H.C., Visani, V.: The successive projections algorithm for variable selection in spectroscopic multicomponent. Chemometr. Intell. Lab. Syst. 57(2), 65–73 (2001)
Gillis, N.: Robustness analysis of hottopixx, a linear programming model for factoring nonnegative matrices. SIAM J. Mat. Anal. Appl. 34(3), 1189–1212 (2013)
Cichocki, A., Zdunek, R.: NMFLAB for signal and image processing. Technical report, Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Saitama, Japan (2006)
Fu, X., Ma, W.K., Huang, K., Sidiropoulos, N.D.: Blind separation of quasi-stationary sources: exploiting convex geometry in covariance domain. IEEE Trans. Sig. Process. 63(9), 2306–2320 (2015)
Fu, X., Sidiropoulos, N.D., Ma, W.K.: Power spectra separation via structured matrix factorization. IEEE Trans. Sig. Process. 64(17), 4592–4605 (2016)
Fu, X., Huang, K., Yang, B., Ma, W.K., Sidiropoulos, N.D.: Robust volume minimization-based matrix factorization for remote sensing and document clustering. IEEE Trans. Sig. Process. 64(23), 6254–6268 (2016)
Yang, Z., Xiang, Y., Rong, Y., Xie, K.: A convex geometry-based blind source separation method for separating nonnegative sources. IEEE Trans. Neural Netw. Learn. Syst. 26(8), 1635–1644 (2015)
Yin, P., Sun, Y., Xin, J.: A geometric blind source separation method based on facet component analysis. Sig. Image Video Process. 10(1), 19–28 (2016)
Zhu, Y., Wang, N., Miller, D.J., Wang, Y.: Convex analysis of mixtures for separating non-negative well-grounded sources. Sci. Rep. 6(38350), 1–13 (2016). doi:10.1038/srep38350
Zhou, G., Cichocki, A.: Canonical polyadic decomposition based on a single mode blind source separation. IEEE Sig. Process. Lett. 19(8), 523–526 (2012)
Acknowledgment
This work was partially supported by the grant 2015/17/B/ST6/01865 funded by National Science Center (NCN) in Poland.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zdunek, R., Sadowski, T. (2017). XRAY Algorithm for Separable Nonnegative Tensor Factorization. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-59147-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59146-9
Online ISBN: 978-3-319-59147-6
eBook Packages: Computer ScienceComputer Science (R0)