Conditioned Anxiety Mechanism as a Basis for a Procedure of Control Module of an Autonomous Robot | SpringerLink
Skip to main content

Conditioned Anxiety Mechanism as a Basis for a Procedure of Control Module of an Autonomous Robot

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10246))

Included in the following conference series:

Abstract

This paper is devoted to the problem of self-control of autonomous robot in a complex, unknown environment. In such an environment it is impossible to predict all situations the robot could be faced with. Because of this it is necessary to equip the robot with control procedures that allow it to avoid dangerous scenarios. Mechanisms that serve to avoid threatening events have been worked out during evolution and living organisms are equipped with them. Conditioned anxiety is one of such mechanisms. In this paper the way in which this mechanism can be adapted to control of behaviour of autonomous robot, is presented. The effectiveness of the proposed approach has been verified by using V-REP simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.coppeliarobotics.com.

  2. 2.

    http://wiki.ros.org/.

References

  1. Arbib, M.A., Fellous, J.M.: Emotions: from brain to robot. Trends Cogn. Sci. 8, 554–561 (2004)

    Article  Google Scholar 

  2. Bajracharya, M., Maimone, M.W., Helmick, D.: Autonomy for Mars rovers: past, present, and future. Computer 41(12), 44–50 (2008)

    Article  Google Scholar 

  3. Bielecki, A.: A model of human activity automatization as a basis of artificial intelligence systems. IEEE Trans. Auton. Mental Dev. 6, 169–182 (2014)

    Article  Google Scholar 

  4. Bielecki, A.: A general entity of life - a cybernetic approach. Biol. Cybern. 109, 401–419 (2015)

    Article  Google Scholar 

  5. Bielecki, A., Buratowski, T., Ciszewski, M., Śmigielski, P.: Vision based techniques of 3D obstacle reconfiguration for the outdoor drilling mobile robot. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 602–612. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_53

    Google Scholar 

  6. Bielecki, A., Buratowski, T., Śmigielski, P.: Syntactic algorithm of two-dimensional scene analysis for unmanned flying vehicles. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 304–312. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33564-8_37

    Chapter  Google Scholar 

  7. Bielecki, A., Buratowski, T., Śmigielski, P.: Recognition of two-dimensional representation of urban environment for autonomous flying agents. Expert Syst. Appl. 40, 3623–3633 (2013)

    Article  Google Scholar 

  8. Bielecki, A., Buratowski, T., Śmigielski, P.: Three-dimensional urban-type scene representation in vision system of unmanned flying vehicles. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 662–671. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_56

    Chapter  Google Scholar 

  9. Bielecki, A., Śmigielski, P.: Graph representation for two-dimensional scene understanding by the cognitive vision module. Int. J. Adv. Robot. Syst. 14(1), 1–14 (2017)

    Article  Google Scholar 

  10. Camurri, A., Coglio, A.: An architecture for emotional agents. IEEE Multimedia 5(4), 24–33 (1998)

    Article  Google Scholar 

  11. Ferber, J.: Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Addison Wesley Longman, Harlow (1999)

    Google Scholar 

  12. Flasiński, M.: Introduction to Artificial Intellignce. Springer International Publishing, Switzerland (2016)

    Book  MATH  Google Scholar 

  13. Ganella, D.E., Kim, J.H.: Developmental rodent models of fear and anxiety: from neurobiology to pharmacology. Br. J. Pharmacol. 171, 4556–4574 (2014)

    Article  Google Scholar 

  14. Gat, E., Desai, R., Ivlev, R., Loch, J., Miller, D.P.: Behavior control for robotic exploration of planetary surfaces. IEEE Trans. Robot. Autom. 10, 490–503 (1994)

    Article  Google Scholar 

  15. Grotzinger, J.P., et al.: Mars science laboratory mission and science investigation. Space Sci. Rev. 170, 5–56 (2012)

    Article  Google Scholar 

  16. Kȩpiński, A.: Anxiety. PZWL (1972) (in Polish)

    Google Scholar 

  17. LeDoux, J.: The Emotional Brain. Simon and Schuster, New York (1996)

    Google Scholar 

  18. Lindemann, R.A., Bickler, D.B., Harrington, B.D.: Mars exploration rover mobility development. IEEE Robot. Autom. Mag. 13(2), 19–26 (2006)

    Article  Google Scholar 

  19. Maren, S.: Neurobiology of Pavlovian fear conditioning. Ann. Rev. Neurosci. 24, 897–931 (2001)

    Article  Google Scholar 

  20. Mazur, M.: Cybernetic Theory of Autonomous Systems. PWN, Warszawa (1966) (in Polish)

    Google Scholar 

  21. Mazur, M.: Cybernetics and Character. PIW, Warszawa (1976) (in Polish)

    Google Scholar 

  22. Maria, K.A., Zitar, M.A.: Emotional agents: a modeling and an application. Inf. Softw. Technol. 49, 695–716 (2007)

    Article  Google Scholar 

  23. Nesse, R.M.: Proximate and evolutionary studies of anxiety, stress and depression: synergy at the interface. Neurosci. Behav. Rev. 23, 895–903 (1999)

    Article  Google Scholar 

  24. Scheier C., Pfeifer R.: The embodied cognitive science approach. In: Tschacher, W., Dauwalde, J.P. (eds.) Dynamics Synergies Autonomous Agents. Studies in Nonlinear Phenomena in Life Science, vol. 8, pp. 159–179 (1999)

    Google Scholar 

  25. Tadeusiewicz, R.: Vision Systems of Industrial Robots. WNT, Warszawa (1992) (in Polish)

    Google Scholar 

  26. Tadeusiewicz, R.: Neural Networks. Akademicka Oficyna Wydawnicza, Warszawa (1993) (in Polish)

    Google Scholar 

  27. Tadeusiewicz, R.: Problems of Biocybernetics. PWN, Warszawa (1994) (in Polish)

    Google Scholar 

  28. Tadeusiewicz, R.: New trends in neurocybernetics. Comput. Methods Mater. Sci. 10, 1–7 (2010)

    Google Scholar 

  29. Tadeusiewicz, R.: Place and role of intelligent systems in computer science. Comput. Methods Mater. Sci. 10, 193–206 (2010)

    Google Scholar 

  30. Tadeusiewicz, R. (ed.) Theoretical Neurocybernetics. WUW, Warszawa (2009) (in Polish)

    Google Scholar 

  31. Tadeusiewicz, R., Chaki, R., Chaki, N.: Exploring Neural Networks with C. CRC Press, Boca Raton (2015)

    Google Scholar 

  32. Velásquez, J.D.: When robots weep: emotional memories and decision-making. In: Proceedings of the 15th National Conference on Artificial Intelligence, AAAI-98, pp. 70–75 (1998)

    Google Scholar 

  33. Volpe, R., Balaram, J., Ohm, T., Ivlev, R.: Rocky 7: a next generation Mars rover prototype. Adv. Robot. 11, 341–358 (1997)

    Article  Google Scholar 

  34. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1947)

    Google Scholar 

  35. Żurada, J.M.: Introduction to Artificial Neural Systems. West Publishing Company, St. Paul (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Bielecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bielecki, A., Bielecka, M., Bielecki, P. (2017). Conditioned Anxiety Mechanism as a Basis for a Procedure of Control Module of an Autonomous Robot. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10246. Springer, Cham. https://doi.org/10.1007/978-3-319-59060-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59060-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59059-2

  • Online ISBN: 978-3-319-59060-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics