Automatic Documents Counterfeit Classification Using Image Processing and Analysis | SpringerLink
Skip to main content

Automatic Documents Counterfeit Classification Using Image Processing and Analysis

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10255))

Included in the following conference series:

Abstract

Counterfeit detection in official documents has challenged forensic experts on trying to correlate them to improve the identification of forgery authors by criminal investigators. Past counterfeit investigation on the Portuguese Police Forensic Laboratory allowed the construction of an organized set of digital images related to counterfeited documents, helping manual identification of new counterfeiters modus operandi. However, these images are usually stored in distinct resolutions, may have different sizes and could have been captured under different types of illumination.

In this paper we present a methodology to automate a counterfeit identification modus operandi, by comparing a given document image with a database of previously catalogued counterfeited documents images. The proposed method ranks the identified counterfeited documents and allows the forensic experts to drive their attention to the most similar documents. It takes advantage of scalable algorithms under the OpenCV framework that compare images, match patterns and analyse textures and colours. We present a set of tests with distinct datasets with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertrand, R., Gomez-Krmer, P., Ramos Terrades, O., Franco, P., Ogier, J.-M.: A system based on intrinsic features for fraudulent document detection. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 106–110. IEEE (2013)

    Google Scholar 

  2. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, No. 50 (1988)

    Google Scholar 

  3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  4. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  5. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). doi:10.1007/11744023_34

    Chapter  Google Scholar 

  6. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International conference on computer vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  7. Vieira, R., Silva, C., Antunes, M., Assis, A.: Information system for automation of counterfeited documents images correlation. Procedia Comput. Sci. 100, 421–428 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the FCT - Fundacão para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vieira, R., Antunes, M., Silva, C., Assis, A. (2017). Automatic Documents Counterfeit Classification Using Image Processing and Analysis. In: Alexandre, L., Salvador Sánchez, J., Rodrigues, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2017. Lecture Notes in Computer Science(), vol 10255. Springer, Cham. https://doi.org/10.1007/978-3-319-58838-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58838-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58837-7

  • Online ISBN: 978-3-319-58838-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics