A Deep Learning Approach for Predicting Process Behaviour at Runtime | SpringerLink
Skip to main content

A Deep Learning Approach for Predicting Process Behaviour at Runtime

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2016)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 281))

Included in the following conference series:

Abstract

Predicting the final state of a running process, the remaining time to completion or the next activity of a running process are important aspects of runtime process management. Runtime management requires the ability to identify processes that are at risk of not meeting certain criteria in order to offer case managers decision information for timely intervention. This in turn requires accurate prediction models for process outcomes and for the next process event, based on runtime information available at the prediction and decision point. In this paper, we describe an initial application of deep learning with recurrent neural networks to the problem of predicting the next process event. This is both a novel method in process prediction, which has previously relied on explicit process models in the form of Hidden Markov Models (HMM) or annotated transition systems, and also a novel application for deep learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://caffe.berkelyvision.org, http://torch.ch, https://singa.incubator.apache.org, https://www.tensorflow.org.

  2. 2.

    http://joerg.evermann.ca/software.html.

References

  1. Houy, C., Fettke, P., Loos, P., Aalst, W.M.P., Krogstie, J.: BPM-in-the-large – towards a higher level of abstraction in business process management. In: Janssen, M., Lamersdorf, W., Pries-Heje, J., Rosemann, M. (eds.) EGES/GISP -2010. IAICT, vol. 334, pp. 233–244. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15346-4_19

    Chapter  Google Scholar 

  2. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  4. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural networks. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pp. 1017–1024 (2011)

    Google Scholar 

  5. Graves, A.: Generating sequences with recurrent neural networks. CoRR abs/1308.0850 (2013)

    Google Scholar 

  6. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. CoRR abs/1409.2329 (2014)

    Google Scholar 

  7. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. SCI, vol. 385. Springer, New York (2012)

    MATH  Google Scholar 

  8. Dongen, B.F., Crooy, R.A., Aalst, W.M.P.: Cycle time prediction: When will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88871-0_22

    Chapter  Google Scholar 

  9. Pandey, S., Nepal, S., Chen, S.: A test-bed for the evaluation of business process prediction techniques. In: 7th International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2011, Orlando, FL, USA, 15–18 October, 2011, pp. 382–391 (2011)

    Google Scholar 

  10. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  11. Folino, F., Guarascio, M., Pontieri, L.: Context-aware predictions on business processes: an ensemble-based solution. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2012. LNCS (LNAI), vol. 7765, pp. 215–229. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37382-4_15

    Chapter  Google Scholar 

  12. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33606-5_18

    Chapter  Google Scholar 

  13. Schwegmann, B., Matzner, M., Janiesch, C.: preCEP: facilitating predictive event-driven process analytics. In: Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013. LNCS, vol. 7939, pp. 448–455. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38827-9_36

    Chapter  Google Scholar 

  14. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45005-1_27

    Chapter  Google Scholar 

  15. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-markovian stochastic petri nets. Inf. Syst. 54, 1–14 (2015)

    Article  Google Scholar 

  16. Bevacqua, A., Carnuccio, M., Folino, F., Guarascio, M., Pontieri, L.: A data-driven prediction framework for analyzing and monitoring business process performances. In: Hammoudi, S., Cordeiro, J., Maciaszek, L.A., Filipe, J. (eds.) ICEIS 2013. LNBIP, vol. 190, pp. 100–117. Springer, Cham (2014). doi:10.1007/978-3-319-09492-2_7

    Google Scholar 

  17. Bolt, A., Sepúlveda, M.: Process remaining time prediction using query catalogs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 54–65. Springer, Cham (2014). doi:10.1007/978-3-319-06257-0_5

    Chapter  Google Scholar 

  18. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks, IJCNN 2014, Beijing, China, July 6–11, 2014, pp. 816–823 (2014)

    Google Scholar 

  19. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. CoRR abs/1602.07566 (2016)

    Google Scholar 

  20. Castellanos, M., Salazar, N., Casati, F., Dayal, U., Shan, M.-C.: Predictive business operations management. In: Bhalla, S. (ed.) DNIS 2005. LNCS, vol. 3433, pp. 1–14. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31970-2_1

    Chapter  Google Scholar 

  21. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.: Business process intelligence. Comput. Ind. 53(3), 321–343 (2004)

    Article  Google Scholar 

  22. Grigori, D., Casati, F., Dayal, U., Shan, M.: Improving business process quality through exception understanding, prediction, and prevention. In: VLDB 2001, Proceedings of 27th International Conference on Very Large Data Bases, September 11–14, 2001, Roma, Italy, pp. 159–168 (2001)

    Google Scholar 

  23. Conforti, R., Leoni, M., Rosa, M., Aalst, W.M.P.: Supporting risk-informed decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38709-8_8

    Chapter  Google Scholar 

  24. Kang, B., Kim, D., Kang, S.: Periodic performance prediction for real-time business process monitoring. Ind. Manage. Data Syst. 112(1), 4–23 (2011)

    Article  Google Scholar 

  25. Kang, B., Kim, D., Kang, S.: Real-time business process monitoring method for prediction of abnormal termination using knni-based LOF prediction. Expert Syst. Appl. 39(5), 6061–6068 (2012)

    Article  Google Scholar 

  26. Maggi, F.M., Francescomarino, C.D., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. CoRR abs/1312.4874 (2013)

    Google Scholar 

  27. Maggi, F.M., Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6_31

    Google Scholar 

  28. Leontjeva, A., Conforti, R., Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). doi:10.1007/978-3-319-23063-4_21

    Chapter  Google Scholar 

  29. Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi, W.: Predictive business process monitoring framework with hyperparameter optimization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 361–376. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5_22

    Google Scholar 

  30. Metzger, A., Leitner, P., Ivanovic, D., Schmieders, E., Franklin, R., Carro, M., Dustdar, S., Pohl, K.: Comparing and combining predictive business process monitoring techniques. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 276–290 (2015)

    Article  Google Scholar 

  31. Folino, F., Guarascio, M., Pontieri, L.: A prediction framework for proactively monitoring aggregate process-performance indicators. In: 19th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2015, Adelaide, Australia, September 21–25, 2015, pp. 128–133 (2015)

    Google Scholar 

  32. Le, M., Gabrys, B., Nauck, D.: A hybrid model for business process event prediction. In: Proceedings of AI-2012, The Thirty-second SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, England, UK, December 11–13, 2012, pp. 179–192 (2012)

    Google Scholar 

  33. Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2015)

    Article  Google Scholar 

  34. Unuvar, M., Lakshmanan, G.T., Doganata, Y.N.: Leveraging path information to generate predictions for parallel business processes. Knowl. Inf. Syst. 47(2), 433–461 (2016)

    Article  Google Scholar 

  35. Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion time and next activity prediction of processes using sequential pattern mining. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 49–61. Springer, Cham (2014). doi:10.1007/978-3-319-11812-3_5

    Google Scholar 

  36. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40, 1009–1034 (2016)

    Google Scholar 

  37. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  38. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: INTERSPEECH 2014, 15th Annual Conference of the International Speech Communication Association, Singapore, September 14–18, 2014, pp. 338–342 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Evermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Evermann, J., Rehse, JR., Fettke, P. (2017). A Deep Learning Approach for Predicting Process Behaviour at Runtime. In: Dumas, M., Fantinato, M. (eds) Business Process Management Workshops. BPM 2016. Lecture Notes in Business Information Processing, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-319-58457-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58457-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58456-0

  • Online ISBN: 978-3-319-58457-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics