Abstract
In the past 20 years, the Life Sciences have witnessed a paradigm shift in the way research is performed. Indeed, the computational part of biological and clinical studies has become central or is becoming so. Correspondingly, the amount of data that one needs to process, compare and analyze, has experienced an exponential growth. As a consequence, High Performance Computing (HPC, for short) is being used intensively, in particular in terms of multi-core architectures. However, recently and thanks to the advances in the processing of other scientific and commercial data, Distributed Computing is also being considered for Bioinformatics applications. In particular, the MapReduce paradigm, together with the main middleware supporting it, i.e., Hadoop and Spark, is becoming increasingly popular.
Here we provide a short review in which the state of the art of MapReduce bioinformatics applications is presented, together with a qualitative evaluation of each of the software systems that have been here included. In order to make the paper self-contained, computer architectural and middleware issues are also briefly presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kahn, S.D.: On the future of genomic data. Science 331, 728–729 (2011)
Mardis, E.R.: The $1,000 genome, the $100,000 analysis? Genome Med. 2, 1–3 (2010)
Compeau, P.E.C., Pevzner, P.A., Tesler, G.: How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol. 29, 987–991 (2011)
Giancarlo, R., Rombo, S.E., Utro, F.: Epigenomic k-mer dictionaries: shedding light on how sequence composition influences in vivo nucleosome positioning. Bioinformatics 31(18), 2939–2946 (2015)
Utro, F., Di Benedetto, V., Corona, D.F., Giancarlo, R.: The intrinsic combinatorial organization and information theoretic content of a sequence are correlated to the DNA encoded nucleosome organization of eukaryotic genomes. Bioinformatics 32(6), 835–842 (2015)
Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC 2: fast and resource-frugal k-mer counting. Bioinformatics 31(10), 1569–1576 (2015)
National Human Genome Research Institute (NIH): The cost of sequencing a human genome (2016). https://www.genome.gov/sequencingcosts/
Tanenbaum, A.S., Van Steen, M.: Distributed Systems. Prentice-Hall, Upper Saddle River (2007)
Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)
Apache Software Foundation: Hadoop (2016). http://hadoop.apache.org/
Apache Software Foundation: Spark (2016). http://spark.apache.org/
Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, vol. 10, pp. 1–7 (2010)
Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., et al.: Apache Hadoop YARN: yet another resource negotiator. In: Proceedings of the 4th annual Symposium on Cloud Computing, pp. 1–16. ACM (2013)
Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In: IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10. IEEE Computer Society, Washington, DC (2010)
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al.: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)
Nordberg, H., Bhatia, K., Wang, K., Wang, Z.: BioPig: a Hadoop-based analytic toolkit for large-scale sequence data. Bioinformatics 29, 3014–3019 (2013)
Matsunaga, A., Tsugawa, M., Fortes, J.: CloudBLAST: combining MapReduce and virtualization on distributed resources for bioinformatics applications. In: IEEE Fourth International Conference on eScience. eScience 2008, pp. 222–229. IEEE (2008)
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)
Piotto, S., Di Biasi, L., Concilio, S., Castiglione, A., Cattaneo, G.: GRIMD: distributed computing for chemists and biologists. Bioinformation 10, 43–47 (2014)
Lopez, D.H., Fiol-deRoque, M.A., Noguera-Salvà, M.A., Terés, S., Campana, F., Piotto, S., Castro, J.A., Mohaibes, R.J., Escribá, P.V., Busquets, X.: 2-Hydroxy arachidonic acid: a new non-steroidal anti-inflammatory drug. PloS ONE 8, 1–10 (2013)
Piotto, S., Concilio, S., Bianchino, E., Iannelli, P., López, D.J., Terés, S., Ibarguren, M., Barceló-Coblijn, G., Martin, M.L., Guardiola-Serrano, F., Alonso-Sande, M., Funari, S.S., Busquets, X., Escribá, P.V.: Differential effect of 2-hydroxyoleic acid enantiomers on protein (sphingomyelin synthase) and lipid (membrane) targets. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838, 1628–1637 (2014)
Piotto, S., Trapani, A., Bianchino, E., Ibarguren, M., López, D.J., Busquets, X., Concilio, S.: The effect of hydroxylated fatty acid-containing phospholipids in the remodeling of lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838, 1509–1517 (2014)
Nguyen, T., Shi, W., Ruden, D.: CloudAligner: a fast and full-featured MapReduce based tool for sequence mapping. BMC Res. Notes 4, 171 (2011)
Cattaneo, G., Italiano, G.F.: Algorithm engineering. ACM Comput. Surv. (CSUR) 31, 582–585 (1999)
Demetrescu, C., Finocchi, I., Italiano, G.F.: Algorithm engineering. Bull. EATCS 79, 48–63 (2003)
Niemenmaa, M., Kallio, A., Schumacher, A., Klemelä, P., Korpelainen, E., Heljanko, K.: Hadoop-BAM: directly manipulating next generation sequencing data in the Cloud. Bioinformatics 28, 876–877 (2012)
Schönherr, S., Forer, L., Weißensteiner, H., Kronenberg, F., Specht, G., Kloss-Brandstätter, A.: Cloudgene: a graphical execution platform for MapReduce programs on private and public clouds. BMC Bioinform. 13, 1–9 (2012)
Ferraro Petrillo, U., Roscigno, G., Cattaneo, G., Giancarlo, R.: FASTdoop: a versatile and efficient library for the input of FASTA and FASTQ files for MapReduce Hadoop bioinformatics applications. Bioinformatics (2017). https://dx.doi.org/10.1093/bioinformatics/btx010
Schumacher, A., Pireddu, L., Niemenmaa, M., Kallio, A., Korpelainen, E., Zanetti, G., Heljanko, K.: SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop. Bioinformatics 30, 119–120 (2014)
Wiewiórka, M.S., Messina, A., Pacholewska, A., Maffioletti, S., Gawrysiak, P., Okoniewski, M.J.: SparkSeq: fast, scalable, Cloud-ready tool for the interactive genomic data analysis with nucleotide precision. Bioinformatics 30, 2652–2653 (2014)
Huang, H., Tata, S., Prill, R.J.: BlueSNP: R package for highly scalable genome-wide association studies using Hadoop clusters. Bioinformatics 29, 135–136 (2013)
Langmead, B., Schatz, M.C., Lin, J., Pop, M., Salzberg, S.L.: Searching for SNPs with Cloud computing. Genome Biol. 10, 1–10 (2009)
Jourdren, L., Bernard, M., Dillies, M.A., Le Crom, S.: Eoulsan: a Cloud computing-based framework facilitating high throughput sequencing analyses. Bioinformatics 28, 1542–1543 (2012)
Hong, D., Rhie, A., Park, S.S., Lee, J., Ju, Y.S., Kim, S., Yu, S.B., Bleazard, T., Park, H.S., Rhee, H., et al.: FX: an RNA-Seq analysis tool on the Cloud. Bioinformatics 28, 721–723 (2012)
Langmead, B., Hansen, K.D., Leek, J.T., et al.: Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol. 11, 1–11 (2010)
Zhang, L., Gu, S., Liu, Y., Wang, B., Azuaje, F.: Gene set analysis in the Cloud. Bioinformatics 28, 294–295 (2012)
Almeida, J.S., Grüneberg, A., Maass, W., Vinga, S.: Fractal MapReduce decomposition of sequence alignment. Algorithms Mol. Biol. 7, 1–12 (2012)
Cattaneo, G., Ferraro Petrillo, U., Giancarlo, R., Roscigno, G.: An effective extension of the applicability of alignment-free biological sequence comparison algorithms with Hadoop. J. Supercomput. 1–17 (2016). http://dx.doi.org/10.1007/s11227-016-1835-3
Hill, C.M., Albach, C.H., Angel, S.G., Pop, M.: K-mulus: strategies for BLAST in the Cloud. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8385, pp. 237–246. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55195-6_22
Colosimo, M.E., Peterson, M.W., Mardis, S., Hirschman, L.: Nephele: genotyping via complete composition vectors and MapReduce. Source Code Biol. Med. 6, 1–10 (2011)
Drew, J., Hahsler, M.: Strand: fast sequence comparison using MapReduce and locality sensitive hashing. In: Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 506–513. ACM (2014)
Chang, Y.J., Chen, C.C., Chen, C.L., Ho, J.M.: A de novo next generation genomic sequence assembler based on string graph and MapReduce Cloud computing framework. BMC Genomics 13, 1–17 (2012)
Schatz, M.C., Sommer, D., Kelley, D., Pop, M.: De novo assembly of large genomes using Cloud computing. In: Proceedings of the Cold Spring Harbor Biology of Genomes Conference (2010)
Schatz, M.C.: BlastReduce: high performance short read mapping with MapReduce. University of Maryland (2008). http://cgis.cs.umd.edu/Grad/scholarlypapers/papers/MichaelSchatz.pdf
Schatz, M.C.: CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 25, 1363–1369 (2009)
Pireddu, L., Leo, S., Zanetti, G.: SEAL: a distributed short read mapping and duplicate removal tool. Bioinformatics 27, 2159–2160 (2011)
Zhao, G., Ling, C., Sun, D.: SparkSW: scalable distributed computing system for large-scale biological sequence alignment. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 845–852. IEEE (2015)
Leo, S., Santoni, F., Zanetti, G.: Biodoop: bioinformatics on Hadoop. In: International Conference on Parallel Processing Workshops (ICPPW 2009), pp. 415–422. IEEE (2009)
Radenski, A., Ehwerhemuepha, L.: Speeding-up codon analysis on the Cloud with local MapReduce aggregation. Inf. Sci. 263, 175–185 (2014)
Rasheed, Z., Rangwala, H.: A Map-Reduce framework for clustering metagenomes. In: IEEE 27th International Parallel and Distributed Processing Symposium Workshops & Ph.D. Forum (IPDPSW), pp. 549–558. IEEE (2013)
Matthews, S.J., Williams, T.L.: MrsRF: an efficient MapReduce algorithm for analyzing large collections of evolutionary trees. BMC Bioinform. 11, 1–9 (2010)
Feng, X., Grossman, R., Stein, L.: PeakRanger: a Cloud-enabled peak caller for ChIP-seq data. BMC Bioinform. 12, 1–11 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cattaneo, G., Giancarlo, R., Piotto, S., Ferraro Petrillo, U., Roscigno, G., Di Biasi, L. (2017). MapReduce in Computational Biology - A Synopsis. In: Rossi, F., Piotto, S., Concilio, S. (eds) Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry. WIVACE 2016. Communications in Computer and Information Science, vol 708. Springer, Cham. https://doi.org/10.1007/978-3-319-57711-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-57711-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57710-4
Online ISBN: 978-3-319-57711-1
eBook Packages: Computer ScienceComputer Science (R0)