On Data Persistence Models for Mobile Crowdsensing Applications | SpringerLink
Skip to main content

On Data Persistence Models for Mobile Crowdsensing Applications

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2016)

Abstract

In this paper, we discuss various models and solutions for saving data in crowdsensing applications. A mobile crowdsensing is a relatively new sensing paradigm based on the power of the crowd with the sensing capabilities of mobile devices, such as smartphones, wearable devices, cars with mobile equipment, etc. This conception (paradigm) becomes quite popular due to huge penetration of mobile devices equipped with multiple sensors. The conception enables to collect local information from individuals (they could be human persons or things) surrounding environment with the help of sensing features of the mobile devices. In our paper, we provide a review of the data persistence solutions (back-end systems, data stores, etc.) for mobile crowdsensing applications. The main goal of our research is to propose a software architecture for mobile crowdsensing in Smart City services. The deployment for such kind of applications in Russia has got some limitations due to legal restrictions also discussed in our paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Namiot, D., Sneps-Sneppe, M.: On crowd sensing back-end. In: DAMDID/RCDL 2016 Selected Papers of the XVIII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2016), CEUR Workshop Proceedings, vol. 1752, pp. 168–175 (2016)

    Google Scholar 

  2. Tanas, C., Herrera-Joancomartí, J.: Users as smart sensors: a mobile platform for sensing public transport incidents. In: Nin, J., Villatoro, D. (eds.) CitiSens 2012. LNCS (LNAI), vol. 7685, pp. 81–93. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36074-9_8

    Chapter  Google Scholar 

  3. Internet of Things, Web of Data & Citizen Participation as Enablers of Smart Cities. http://www.slideshare.net/dipina/internet-of-things-web-of-data-citizen-participation-as-enablers-of-smart-cities. Accessed Jan 2017

  4. Namiot, D., Sneps-Sneppe, M.: The physical web in smart cities. In: Advances in Wireless and Optical Communications (RTUWO 2015). IEEE Press, New York (2015)

    Google Scholar 

  5. Namiot, D., Sneps-Sneppe, M.: CAT - cars as tags. In: 2014 Proceedings of the 7th International Workshop on Communication Technologies for Vehicles (Nets4Cars-Fall). IEEE Press, New York (2014)

    Google Scholar 

  6. Massaro, E., et al.: The car as an ambient sensing platform. Proc. IEEE 105(1), 3–7 (2017)

    Article  Google Scholar 

  7. Hu, X., Chu, T., Chan, H., Leung, V.: Vita: a crowdsensing-oriented mobile cyber-physical system. IEEE Trans. Emerg. Top. Comput. 1(1), 148–165 (2013)

    Article  Google Scholar 

  8. Calabrese, F., Ratti, C.: Real time rome. Netw. Commun. Stud. 20(3-4), 247–258 (2006)

    Google Scholar 

  9. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Comput. 1, 46–55 (2003)

    Article  Google Scholar 

  10. Konidala, D.M., Deng, R.H., Li, Y., Lau, H.C., Fienberg, S.E.: Anonymous authentication of visitors for mobile crowd sensing at amusement parks. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 174–188. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38033-4_13

    Chapter  Google Scholar 

  11. Ganti, R.K., Fan, Y., Hui, L.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

    Article  Google Scholar 

  12. Lane, N., et al.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)

    Article  Google Scholar 

  13. Bellavista, P., et al.: Scalable and cost-effective assignment of mobile crowdsensing tasks based on profiling trends and prediction: the ParticipAct living lab experience. Sensors 15(8), 18613–18640 (2015)

    Article  Google Scholar 

  14. Namiot, D., Sneps-Sneppe, M.: On software standards for smart cities: API or DPI. In: ITU Kaleidoscope Academic Conference: Living in a converged world-Impossible without standards? Proceedings of the 2014. IEEE Press (2014)

    Google Scholar 

  15. Yue, K., et al.: Research of embedded database SQLite application in intelligent remote monitoring system. In: 2010 International Forum on Information Technology and Applications (IFITA), vol. 2. IEEE (2010)

    Google Scholar 

  16. Namiot, D., Sneps-Sneppe, M.: On open source mobile sensing. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 82–94. Springer, Cham (2014). doi:10.1007/978-3-319-10353-2_8

    Google Scholar 

  17. Funf. http://funf.org/. Accessed Jan 2017

  18. Bansal, S.K.: Towards a semantic extract-transform-load (ETL) framework for big data integration. In: 2014 IEEE International Congress on Big Data. IEEE Press (2014)

    Google Scholar 

  19. Namiot, D.: On big data stream processing. Int. J. Open Inf. Technol. 3(8), 48–51 (2015)

    Google Scholar 

  20. Kroß, J., Brunnert, A., Prehofer, C., Runkler, T.A., Krcmar, H.: Stream processing on demand for lambda architectures. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 243–257. Springer, Cham (2015). doi:10.1007/978-3-319-23267-6_16

    Chapter  Google Scholar 

  21. Lambda architecture. http://lambda-architecture.net/. Accessed Jan 2017

  22. Questioning the Lambda Architecture. http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.htm. Accessed Jan 2017

  23. Gál, Z., Hunor S., Béla G.: Information flow and complex event processing of the sensor network communication. In: 2015 Proceedings of the 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). IEEE Press (2015)

    Google Scholar 

  24. Merging Batch and Stream Processing in a Post Lambda World. https://www.datanami.com/2016/06/01/merging-batch-streaming-post-lambda-world/. Accessed Jan 2017

  25. Garg, N.: Apache Kafka. Packt Publishing Ltd, Birmingham (2013)

    Google Scholar 

  26. Maarala, A.I., et al.: Low latency analytics for streaming traffic data with Apache Spark. In: 2015 IEEE International Conference on Big Data (Big Data). IEEE Press (2015)

    Google Scholar 

  27. Kafka Streams. http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple. Accessed Jan 2017

  28. Apache Edgent. https://edgent.apache.org/. Accessed Jan 2017

  29. Mobile-edge computing executing brief. https://portal.etsi.org/portals/0/tbpages/mec/docs/mec%20executive%20brief%20v1%2028-09-14.pdf. Accessed Jan 2017

  30. Sanaei, Z., et al.: Heterogeneity in mobile cloud computing: taxonomy and open challenges. IEEE Commun. Surv. Tutorials 16(1), 369–392 (2014)

    Article  Google Scholar 

  31. Osseiran, Afif, et al.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)

    Article  Google Scholar 

  32. Namiot, D., Sneps-Sneppe, M.: On hyper-local web pages. In: Vishnevsky, V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 11–18. Springer, Cham (2016). doi:10.1007/978-3-319-30843-2_2

    Chapter  Google Scholar 

  33. Scalable Streaming of Video using Amazon Web Services. http://www.slideshare.net/AmazonWebServices/2013-1021scalablestreamingwebinar. Accessed Jan 2017

  34. Selectel API (Russia). https://selectel.ru/services/cloud-storage/. Accessed Jan 2017

  35. Apache CloudStack. https://cloudstack.apache.org/. Accessed Jan 2017

  36. Nurmi, D., et al.: The eucalyptus open-source cloud-computing system. In: 2009 Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID 2009. IEEE Press (2009)

    Google Scholar 

  37. OpenStack. https://www.openstack.org/. Accessed Jan 2017

  38. Wen, X., et al.: Comparison of open-source cloud management platforms: OpenStack and OpenNebula. In: 2012 Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE Press (2012)

    Google Scholar 

  39. IBM Cloud Video. https://www.ibm.com/cloud-computing/solutions/video/. Accessed Jan 2017

  40. Smartvue. http://smartvue.com/cloud-services.html. Accessed Jan 2017

  41. FI-WARE Cloud Hosting. https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Cloud_Hosting_Architecture. Accessed Jan 2017

  42. Kurento – the stream-oriented generic enabler. https://www.fiware.org/2014/07/04/kurento-the-stream-oriented-generic-enabler/. Accessed Jan 2017

  43. Gheith, A., et al.: IBM bluemix mobile cloud services. IBM J. Res. Dev. 60(2-3), 7:1 (2016)

    Article  Google Scholar 

  44. Apache Usergrid. https://usergrid.apache.org/. Accessed Jan 2017

  45. Rackspace Cloud Files. https://www.rackspace.com/cloud/files. Accessed Jan 2017

  46. Namiot, D., Sneps-Sneppe, M.: On the domestic standards for Smart Cities. Int. J. Open Inf. Technol. 4(7), 32–37 (2016)

    Google Scholar 

  47. Namiot, D., Sneps-Sneppe, M.: On physical web browser. In: Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT), pp. 220–225. IEEE Press, New York (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Namiot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Namiot, D., Sneps-Sneppe, M. (2017). On Data Persistence Models for Mobile Crowdsensing Applications. In: Kalinichenko, L., Kuznetsov, S., Manolopoulos, Y. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2016. Communications in Computer and Information Science, vol 706. Springer, Cham. https://doi.org/10.1007/978-3-319-57135-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57135-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57134-8

  • Online ISBN: 978-3-319-57135-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics