A Hybrid Variable Selection Approach for NN-Based Classification in Industrial Context | SpringerLink
Skip to main content

A Hybrid Variable Selection Approach for NN-Based Classification in Industrial Context

  • Chapter
  • First Online:
Multidisciplinary Approaches to Neural Computing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 69))

Abstract

Variable selection is an important concept in data mining, which can improve both the performance of machine learning and the process knowledge by removing the irrelevant and redundant features. The paper presents a hybrid variable selection approach that merges a combination of filters with a wrapper in order to obtain an informative subset of variables in a reasonable time, improving the stability of the single approach of more than 36% in average, without decreasing the system performance. The proposed method is tested on datasets coming from the UCI repository and from industrial contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.: Uci machine learning repository (2007). http://archive.ics.uci.edu/ml/datasets.html

  2. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press (1961)

    Google Scholar 

  3. Cateni, S., Colla, V.: Improving the stability of wrapper variable selection applied to binary classification. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 8, 214–225 (2016)

    Google Scholar 

  4. Cateni, S., Colla, V.: Improving the stability of sequential forward and backward variables selection. In: 15 th International Conference on Intelligent Systems design and applications ISDA 2015, pp. 374–379 (2016)

    Google Scholar 

  5. Cateni, S., Colla, V., Vannucci, M.: General purpose input variable extraction: a genetic algorithm based procedure give a gap. In: 9th International Conference on Intelligence Systems design and Applications ISDA’09, pp. 1278–1283 (2009)

    Google Scholar 

  6. Cateni, S., Colla, V., Vannucci, M.: Variable selection through genetic algorithms for classification purpose. In: Proceedings of the 10th IASTED International Conference on Artificial Intelligence and Applications, AIA 2010, pp. 6–11 (2010)

    Google Scholar 

  7. Cateni, S., Colla, V., Vannucci, M.: A genetic algorithm based approach for selecting input variables and setting relevant network parameters of som based classifier. Int. J. Simul. Syst. Sci. Technol. 12(2), 30–37 (2011)

    Google Scholar 

  8. Cateni, S., Colla, V., Vannucci, M.: Novel resampling method for the classification of imbalanced datasets for industrial and other rreal-world problems. Int. Conf. Intell. Syst. Des. Appl. ISDA 2011, 402–407 (2011)

    Google Scholar 

  9. Cateni, S., Colla, V., Vannucci, M.: A hybrid feature selection method for classification purposes. In: 8th European Modeling Symposium on Mathematical Modeling and Computer simulation EMS2014 1 Pisa (Italy), pp. 1–8 (2014)

    Google Scholar 

  10. Cateni, S., Colla, V., Vannucci, M.: A method for resampling imbalanced datadata in binary classification tasks for real-world problems. Neurocomputing 135, 32–41 (2014)

    Article  Google Scholar 

  11. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (USA) (2001)

    MATH  Google Scholar 

  12. Fausett, L.: Foundamentals of Neural Networks. Prentice Hall (1994)

    Google Scholar 

  13. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., lander, C.B.E.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Google Scholar 

  14. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Mach. Learn. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  15. Haykin, S.: Neural Networks: A Comprehensive Foundation. MacMillman Publishing (1994)

    Google Scholar 

  16. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems, pp. 507–514 (2005)

    Google Scholar 

  17. Koc, L., Carswell, A.D.: Network intrusion detection using a hnb binary classifier. In: 17th UKSIM-AMSS International Conference on Modelling and Simulation (2015)

    Google Scholar 

  18. Kohavi, R., John, G.: Wrappers for feature selection. Artif. Intell. 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  19. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, K.: Combining multiple feature selection methods. Ph.D. Thesis, The Mid-Atlantic Student Workshop on Programming Languages and Systems Pace University (2002)

    Google Scholar 

  21. May, R., Dandy, G., Maier, H.: Review of input variable selection methods for artificial neural networks. Artif. Neural Netw. Methodol. Adv. Biomed. Appl. (2011)

    Google Scholar 

  22. Nikooienejad, A., Wang, W., Johnson, V.E.: Bayesian variable selection for binary outcomes in high dimensional genomic studies using non-local priors. Bioinformatics 32(2) (2016)

    Google Scholar 

  23. Rice, J.A.: Mathematical Statistics and Data Analysis. Third Edition (2006)

    Google Scholar 

  24. Sebban, M., Nock, R.: A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recogn. 35, 835–846 (2002)

    Article  MATH  Google Scholar 

  25. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45, 427–437 (2009)

    Article  Google Scholar 

  26. Theodoridis, S., Koutroumbas, K.: Pattern Recogn. (1999)

    Google Scholar 

  27. Turney, P.: Techncal note:bias and the quantification of stability. Mach. Learn. 20, 23–33 (1995)

    Google Scholar 

  28. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation basedfilter solution. In: Proceedings of the 20th International Conference on Machine Learning ICML, vol. 1, pp. 856–863 (2003)

    Google Scholar 

  29. Zhang, K., Li, Y., Scarf, P., Ball, A.: Feature selection for high-dimensional machinery fault diagnosis data using multiple models and radial basis function networks. Neurocomputing 74, 2941–2952 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Colla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cateni, S., Colla, V. (2018). A Hybrid Variable Selection Approach for NN-Based Classification in Industrial Context. In: Esposito, A., Faudez-Zanuy, M., Morabito, F., Pasero, E. (eds) Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-56904-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56904-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56903-1

  • Online ISBN: 978-3-319-56904-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics