Abstract
A common property of a living organism as a non-equilibrium dynamic system is the self-organization including the evolution of this self-organized system through distinct consecutive stages. In this article, the properties of dynamic self-organization is examined on a primitive model of life – the oscillating Belousov-Zhabotinsky (BZ) reaction. This system is sensitive to the changes of external conditions by dynamic reorganization of chemical waves. The generated patterns bring the information on history of the reaction evolution. We performed the pattern classification using calculation of the point information gain entropy density followed by multivariate statistical analysis. It was proved by numerous experiments that each obtained cluster is related to a unique reaction stage with characteristic concentrations of the reactants. The reliability makes this method promising for application to the recognition of stages in variety of complex systems. The results obtained via visual inspection of 6 parallel image series of the BZ reaction together with their statistical analysis approximate cell physiology during development and differentiation of tissues – a small change in the initial conditions leads to a different development of the cell population. This finding also explains a lower reproducibility of measurements of biological systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belousov, B.P.: Periodically acting reaction and its mechanism. Collect. Abs. Radiat. Med. 2, 145–147 (1959)
Zhabotinsky, A.M.: Periodic processes of malonic acid oxidation in a liquid phase. Biophysics 9, 306–311 (1964)
Winfree, A.T.: The Geometry of Biological Time, vol. 12. Springer, New York (1980)
Zhyrova, A., Štys, D.: Construction of the phenomenological model of Belousov-Zhabotinsky reaction state trajectory. Int. J. Comput. Math. 91(1), 4–13 (2014)
Zhyrova, A., Stys, D., Cisar, P.: Information entropy approach as a method of analysing Belousov-Zhabotinsky reaction wave formation. Chem. Listy 107(Suppl. 3), S341–S342 (2013)
Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1124 (1993)
Jian, L., Zhen-Su, S.: Hierarchical structure description of spatiotemporal chaos (2008). http://arxiv.org/pdf/nlin/0408024.pdf
Prigogine, I., Nicolis, G.: Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, 1st edn., p. 512. Wiley-Interscience, New York (1977)
Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems, p. 560. Princeton University Press (2003)
Hines, T.M.: Comprehensive review of biorhythm theory. Psychol. Rep. 83(1), 19–64 (1998)
Siegert, F., Weijer, C.J.: Spiral and concentric waves organize multicellular Dictyostelium mounds. Curr. Biol. 5(8), 937–943 (1995)
Davidenko, J.M., Pertsov, A.V., Salomonsz, R., Baxter, W., Jalife, J.: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355(6358), 349–351 (1992)
Gorelova, N.A., Bures, J.: Spiral waves of spreading depression in the isolated chicken retina. J. Neurobiol. 14(5), 353–63 (1983)
Shanks, N.: Modelling the biological systems: the Belousov-Zhabotinsky reaction. Found. Chem. 3, 33–53 (2001)
Rychtáriková, R.: Clustering of multi-image sets using Rényi information entropy. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 517–526. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31744-1_46
Štys, D., Urban, J., Rychtáriková, R., Zhyrova, A., Císař, P.: Measurement in biological systems from the self-organisation point of view. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9044, pp. 431–443. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16480-9_43
Cohen, J.: Belousov-Zhabotinski Reaction Do-it-Yourself Kit (2009). http://drjackcohen.com/BZ01.html
Štys, D., Náhlík, T., Macháček, P., Rychtáriková, R., Saberioon, M.: Least Information Loss (LIL) conversion of digital images and lessons learned for scientific image inspection. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 527–536. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31744-1_47
MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks Inc. (2010)
Císař, P., Urban, J., Náhlík, T., Rychtáriková, R., Štys, D.: Image Info Extractor Professional, v. b9 (2015). http://www.auc.cz/software/index5.htm
The Unscrambler X version 10.1. Oslo, Norway: CAMO Software (2011)
Rychtáriková, R., Korbel, J., Macháček, P., Císař, P., Urban, J., Štys, D.: Point information gain and multidimensional data analysis. Entropy 18(10), 372 (2016)
Stys, D., Urban, J., Vanek, J., Cisar, P.: Analysis of biological time-lapse microscopic experiment from the point of view of the information theory. Micron 42, 360–365 (2011)
Stys, D., Vanek, J., Nahlik, T., Urban, J., Cisar, P.: The cell monolayer trajectory from the system state point of view. Mol. Biosys. 7, 2824–2833 (2011)
Zhyrova, A., Rychtáriková, R., Náhlík, T.: Effect of spatial constrain on the self-organizing behavior of the Belousov-Zhabotinsky reaction. In: IWBBIO 2016, Proceedings Extended Abstracts, Bioinformatics and Biomedical Engineering, pp. 246–258 (2016)
Štys, D., Náhlík, T., Zhyrova, A., Rychtáriková, R., Papáček, Š., Císař, P.: Model of the belousov-zhabotinsky reaction. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds.) HPCSE 2015. LNCS, vol. 9611, pp. 171–185. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40361-8_13
Náhlík, T., Urban, J., Císař, P., Vaněk, J., Štys, D.: Entropy based approximation to cell monolayer development. In: Jobbágy, Á. (ed.) 5th European Conference of the International Federation for Medical and Biological Engineering. (IFMBE), vol. 37. Springer, Heidelberg (2012). doi:10.1007/978-3-642-23508-5_146
Rychtáriková, R., Náhlík, T., Smaha, R., Urban, J., Štys Jr., D., Císař, P., Štys, D.: Multifractality in Imaging: application of information entropy for observation of inner dynamics inside of an unlabeled living cell in bright-field microscopy. In: Sanayei, A., Rössler, O.E., Zelinka, I. (eds.) ISCS 2014: Interdisciplinary Symposium on Complex Systems. ECC, vol. 14, pp. 261–267. Springer, Heidelberg (2015). doi:10.1007/978-3-319-10759-2_27
Acknowledgments
This work was partly supported by the Ministry of Education, Youth and Sports of the Czech Republic – projects CENAKVA (No. CZ.1.05/2.1.00/01.0024) and CENAKVA II (No. LO1205 under the NPU I program).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhyrova, A., Rychtáriková, R., Štys, D. (2017). Recognition of Stages in the Belousov-Zhabotinsky Reaction Using Information Entropy: Implications to Cell Biology. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-56148-6_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56147-9
Online ISBN: 978-3-319-56148-6
eBook Packages: Computer ScienceComputer Science (R0)