Abstract
In a volunteer distributed computing system, users run a program on their own machine to contribute to a common effort. If the program is embedded in a web page, collaboration is straightforward, but also ephemeral. In this paper, we analyze a volunteer evolutionary computing system called NodIO, by running several experiments, some of them massive. Our objective is to discover rules that encourage volunteer participation and also the interplay of these contributions with the dynamics of the algorithm itself, making it more or less efficient. We will show different measures of participation and contribution to the algorithm, as well as how different volunteer usage patterns and tweaks in the algorithm, such as restarting clients when a solution has been found, contribute to improvements and leveraging of these contributions. We will also try to find out what is the key factor in the early termination of the experiments, measuring entropy in the contributions and other large scale indicators.
Similar content being viewed by others
Notes
- 1.
It is not guaranteed to be running, or running the same version, when you read this, however; you can always get the sources from GitHub and set it up yourself.
References
Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers, Norwell (1987)
Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)
Anetsberger, J., Bongard, J.: Robots can ground crowd-proposed symbols by forming theories of group mind. In: Proceedings Alife XV (2016)
Apolónia, N., Ferreira, P., Veiga, L.: Enhancing online communities with cycle-sharing for social networks. In: Abraham, A., Hassanien, A.-E. (eds.) Computational Social Networks, pp. 161–195. Springer, Heidelberg (2012)
Baumert, M., Baier, V., Haueisen, J., Wessel, N., Meyerfeldt, U., Schirdewan, A., Voss, A., et al.: Forecasting of life threatening arrhythmias using the compression entropy of heart rate. Methods Inf. Med. (Methodik der Information in der Medizin) 43(2), 202 (2004)
Boldrin, F., Taddia, C., Mazzini, G.: Distributed computing through web browser. In: 2007 IEEE 66th Vehicular Technology Conference, VTC-2007 Fall, pp. 2020–2024. IEEE (2007)
Duda, J., Dłubacz, W.: Distributed evolutionary computing system based on web browsers with JavaScript. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 183–191. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36803-5_13
Fajardo, E.M., Dost, J.M., Holzman, B., Tannenbaum, T., Letts, J., Tiradani, A., Bockelman, B., Frey, J., Mason, D.: How much higher can htcondor fly? J. Phys. Conf. Ser. 664(6), 062014 (2015). http://stacks.iop.org/1742-6596/664/i=6/a=062014
Gonzalez, D.L., de Vega, F.F., Trujillo, L., Olague, G., de la O, F.C., Cardenas, M., Araujo, L., Castillo, P.A., Sharman, K.: Increasing GP computing power via volunteer computing. CoRR abs/0801.1210 (2008)
Klein, J., Spector, L.: Unwitting distributed genetic programming via asynchronous JavaScript and XML. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1628–1635. ACM, New York (2007)
Kosorukoff, A.: Human based genetic algorithm. In: 2001 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 3464–3469 (2001)
Langdon, W.B.: Pfeiffer - a distributed open-ended evolutionary system. In: Edmonds, B., Gilbert, N., Gustafson, S., Hales, D., Krasnogor, N. (eds.) AISB 2005: Proceedings of the Joint Symposium on Socially Inspired Computing (METAS 2005), 12–15 April 2005, pp. 7–13. University of Hertfordshire, Hatfield, UK (2005). http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_metas2005.pdf. sSAISB 2005 Convention
Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J., Fernandes, C.: Resilience to churn of a peer-to-peer evolutionary algorithm. Int. J. High Perform. Syst. Architect. 1(4), 260–268 (2008)
Leclerc, G., Auerbach, J.E., Iacca, G., Floreano, D.: The seamless peer and cloud evolution framework. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp. 821–828. ACM (2016)
Martınez, G.J., Val, L.: Capataz: A framework for distributing algorithms via the World Wide Web. CLEI Electron. J. 18(2), 1 (2015)
Masse, M.: REST API Design Rulebook. O’Reilly Media, Inc., Sebastopol (2011)
Merelo, J.J., García, A.M., Laredo, J.L.J., Lupión, J., Tricas, F.: Browser-based distributed evolutionary computation: performance and scaling behavior. In: Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, GECCO 2007, pp. 2851–2858. ACM, New York (2007)
Merelo-Guervós, J.J., García-Sánchez, P.: Designing and modeling a browser-based distributed evolutionary computation system. In: Laredo, J.L.J., Silva, S., Esparcia-Alcázar, A.I. (eds.) Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11–15, 2015, Companion Material Proceedings, pp. 1117–1124. ACM (2015). http://doi.acm.org/10.1145/2739482.2768465
Ornstein, D.S., Weiss, B.: Entropy and data compression schemes. IEEE Trans. Inf. Theory 39(1), 78–83 (1993)
Pan, Y., White, J., Sun, Y., Gray, J.: Gray computing: an analysis of computing with background javascript tasks. In: Proceedings of the 37th International Conference on Software Engineering, vol. 1, pp. 167–177. IEEE Press (2015)
Paulson, L.D.: Building rich web applications with ajax. Computer 38(10), 14–17 (2005)
Peñalver, J.G., Merelo, J.J.: Optimizing web page layout using an annealed genetic algorithm as client-side script. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 1018–1027. Springer, Heidelberg (1998). doi:10.1007/BFb0056943
Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a growing field. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1403–1412. ACM (2011)
Rivas, V.M., Guervós, J.J.M., López, G.R., Arenas-García, M., Mora, A.M.: An object-oriented library in javascript to build modular and flexible cross-platform evolutionary algorithms. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 853–862. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45523-4_69
Sarmenta, L.F.: Volunteer computing. Ph.D. thesis, Massachusetts Institute of Technology (2001)
Valdez, M.G., Trujillo, L., Merelo-Guervós, J.J., de Vega, F.F., Olague, G.: The evospace model for pool-based evolutionary algorithms. J. Grid Comput. 13(3), 329–349 (2015). http://dx.doi.org/10.1007/s10723-014-9319-2
Vespignani, A., et al.: Predicting the behavior of techno-social systems. Science 325(5939), 425 (2009)
Acknowledgments
This work has been supported in part by TIN2014-56494-C4-3-P (Spanish Ministry of Economy and Competitivity). We are also grateful to @otisdriftwood for his help gathering users for the new experiments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Merelo, J.J., de las Cuevas, P., García-Sánchez, P., García-Valdez, M. (2017). A Performance Assessment of Evolutionary Algorithms in Volunteer Computing Environments: The Importance of Entropy. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-55849-3_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55848-6
Online ISBN: 978-3-319-55849-3
eBook Packages: Computer ScienceComputer Science (R0)