Abstract
This paper outlines an approach to real-time music generation using melody and harmony focused agents in a process inspired by jazz improvisation. A harmony agent employs a Long Short-Term Memory (LSTM) artificial neural network trained on the chord progressions of 2986 jazz ‘standard’ compositions using a network structure novel to chord sequence analysis. The melody agent uses a rule-based system of manipulating provided, pre-composed melodies to improvise new themes and variations. The agents take turns in leading the direction of the composition based on a rating system that rewards harmonic consistency and melodic flow. In developing the multi-agent system it was found that implementing embedded spaces in the LSTM encoding process resulted in significant improvements to chord sequence learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/, software available from tensorflow.org
Barrett, F.J.: Coda–creativity and improvisation in jazz and organizations: implications for organizational learning. Organ. Sci. 9(5), 605–622 (1998)
Bastien, D.T., Hostager, T.J.: Jazz as a process of organizational innovation. Commun. Res. 15(5), 582–602 (1988)
Berliner, P.: Thinking in jazz: composing in the moment. Jazz Educ. J. 26, 241 (1994)
Biles, J.A.: Genjam in transition: from genetic jammer to generative jammer. In: Generative Art, vol. 2002 (2002)
Choi, K., Fazekas, G., Sandler, M.: Text-based LSTM networks for automatic music composition. arXiv preprint arXiv:1604.05358 (2016)
Eck, D., Schmidhuber, J.: A first look at music composition using LSTM recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale 103 (2002)
Eigenfeldt, A., Pasquier, P.: A realtime generative music system using autonomous melody, harmony, and rhythm agents. In: XIII Internationale Conference on Generative Arts, Milan, Italy (2009)
Eigenfeldt, A., Pasquier, P.: Realtime generation of harmonic progressions using controlled Markov selection. In: Proceedings of ICCC-X-Computational Creativity Conference, pp. 16–25 (2010)
Folkestad, G., Hargreaves, D.J., Lindström, B.: Compositional strategies in computer-based music-making. Br. J. Music Educ. 15(01), 83–97 (1998)
Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 3, 115–143 (2002)
Johnson-Laird, P.N.: How jazz musicians improvise. Music Percept. Interdisc. J. 19(3), 415–442 (2002)
Keller, R.M., Morrison, D.R.: A grammatical approach to automatic improvisation. In: Proceedings, Fourth Sound and Music Conference, Lefkada, Greece, July. Most of the soloists at Birdland had to wait for Parker’s next record in order to find out what to play next. What will they do now (2007)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Levine, M.: The Jazz Theory Book. O’Reilly Media Inc., Sebastopol (2011)
Monson, I.: Jazz as political and musical practice. In: Musical Improvisation: Art, Education, and Society, pp. 21–37 (2009)
Pachet, F.: Enhancing individual creativity with interactive musical reflexive systems. In: Musical Creativity, pp. 359–375 (2006)
Pachet, F., Roy, P.: Imitative leadsheet generation with user constraints. In: ECAI, pp. 1077–1078 (2014)
Papadopoulos, A., Roy, P., Pachet, F.: Assisted lead sheet composition using FlowComposer. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 769–785. Springer, Cham (2016). doi:10.1007/978-3-319-44953-1_48
Plans, D., Morelli, D.: Experience-driven procedural music generation for games. IEEE Trans. Comput. Intell. AI Games 4(3), 192–198 (2012)
Rendel, A., Fernandez, R., Hoory, R., Ramabhadran, B.: Using continuous lexical embeddings to improve symbolic-prosody prediction in a text-to-speech front-end. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5655–5659. IEEE (2016)
Sturm, B.L., Santos, J.F., Ben-Tal, O., Korshunova, I.: Music transcription modelling and composition using deep learning. arXiv preprint arXiv:1604.08723 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hutchings, P., McCormack, J. (2017). Using Autonomous Agents to Improvise Music Compositions in Real-Time. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-55750-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55749-6
Online ISBN: 978-3-319-55750-2
eBook Packages: Computer ScienceComputer Science (R0)