Towards Polyphony Reconstruction Using Multidimensional Multiple Sequence Alignment | SpringerLink
Skip to main content

Towards Polyphony Reconstruction Using Multidimensional Multiple Sequence Alignment

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10198))

Abstract

The digitization of printed music scores through the process of optical music recognition is imperfect. In polyphonic scores, with two or more simultaneous voices, errors of duration or position can lead to badly aligned and inharmonious digital transcriptions. We adapt biological sequence analysis tools as a post-processing step to correct the alignment of voices. Our multiple sequence alignment approach works on multiple musical dimensions and we investigate the contribution of each dimension to the correct alignment. Structural information, such musical phrase boundaries, is of major importance; therefore, we propose the use of the popular bioinformatics aligner Mafft which can incorporate such information while being robust to temporal noise. Our experiments show that a harmony-aware Mafft outperforms sophisticated, multidimensional alignment approaches and can achieve near-perfect polyphony reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.aruspix.net.

  2. 2.

    www.genevanpsalter.com/music-a-lyrics/2-complete-collections/181-midi-collections.

References

  1. Blackburne, B.P., Whelan, S.: Measuring the distance between multiple sequence alignments. Bioinformatics 28(4), 495–502 (2012)

    Article  Google Scholar 

  2. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: Modeling temporal dependencies in high-dimensional sequences: application to polyphonic music generation and transcription. arXiv preprint arXiv:1206.6392 (2012)

  3. Bountouridis, D., Koops, H.V., Wiering, F., Veltkamp, R.C.: A data-driven approach to chord similarity and chord mutability. In: International Conference on Multimedia Big Data, pp. 275–278 (2016)

    Google Scholar 

  4. Cambouropoulos, E.: The local boundary detection model (LBDM) and its application in the study of expressive timing. In: International Computer Music Conference, pp. 17–22 (2001)

    Google Scholar 

  5. Carrillo, H., Lipman, D.: The multiple sequence alignment problem in biology. SIAM J. Appl. Math. 48(5), 1073–1082 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carroll, H., Clement, M.J., Ridge, P., Snell, Q.O.: Effects of gap open and gap extension penalties. In: Biotechnology and Bioinformatics Symposium, pp. 19–23 (2006)

    Google Scholar 

  7. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: 22 a model of evolutionary change in proteins. In: Atlas of Protein Sequence and Structure, vol. 5, pp. 345–352. National Biomedical Research Foundation Silver Spring, MD (1978)

    Google Scholar 

  8. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  9. Feng, D.-F., Doolittle, R.F.: Progressive sequence alignment as a prerequisitetto correct phylogenetic trees. J. Mol. Evol. 25(4), 351–360 (1987)

    Article  Google Scholar 

  10. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89(22), 10915–10919 (1992)

    Article  Google Scholar 

  11. Hogeweg, P., Hesper, B.: The alignment of sets of sequences and the construction of phyletic trees: an integrated method. J. Mol. Evol. 20(2), 175–186 (1984)

    Article  Google Scholar 

  12. Hudek, A.K.: Improvements in the accuracy of pairwise genomic alignment (2010)

    Google Scholar 

  13. Joh, C.-H., Arentze, T., Hofman, F., Timmermans, H.: Activity pattern similarity: a multidimensional sequence alignment method. Transp. Res. Part B Methodol. 36(5), 385–403 (2002)

    Article  Google Scholar 

  14. Katoh, K., Misawa, K., Kuma, K., Miyata, T.: Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002)

    Article  Google Scholar 

  15. Lartillot, O., Toiviainen, P., Eerola, T.: A matlab toolbox for music information retrieval. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications, pp. 261–268. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Lerdahl, F., Jackendoff, R.: An overview of hierarchical structure in music. Music Percept. Interdisc. J. 1(2), 229–252 (1983)

    Article  Google Scholar 

  17. Lyu, Q., Wu, Z., Zhu, J., Meng, H.: Modelling high-dimensional sequences with LSTM-RTRBM: application to polyphonic music generation. In: International Conference on Artificial Intelligence, pp. 4138–4139. AAAI Press (2015)

    Google Scholar 

  18. Morgenstern, B., Dress, A., Werner, T.: Multiple dna and protein sequence alignment based on segment-to-segment comparison. Proc. Natl. Acad. Sci. 93(22), 12098–12103 (1996)

    Article  MATH  Google Scholar 

  19. Pugin, L., Crawford, T.: Evaluating omr on the early music online collection. In: International Society on Music, Information Retrieval, pp. 439–444 (2013)

    Google Scholar 

  20. Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A.R.S., Guedes, C., Cardoso, J.S.: Optical music recognition: state-of-the-art and open issues. Int. J. Multimedia Inf. Retrieval 1(3), 173–190 (2012)

    Article  Google Scholar 

  21. Rodríguez López, M.E.: Automatic Melody Segmentation. Ph.D. thesis, Utrecht University (2016)

    Google Scholar 

  22. Sanguansat, P.: Multiple multidimensional sequence alignment using generalized dynamic time warping. WSEAS Trans. Math. 11(8), 668–678 (2012)

    Google Scholar 

  23. Tenney, J., Polansky, L.: Temporal gestalt perception in music. J. Music Theory 24(2), 205–241 (1980)

    Article  Google Scholar 

  24. Thompson, J.D., Higgins, D.G., Gibson, T.J.: Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994)

    Article  Google Scholar 

  25. van Kranenburg, P.: A computational approach to content-based retrieval of folk song melodies. Ph.D. thesis (2010)

    Google Scholar 

  26. Volk, A., Garbers, J., Van Kranenburg, P., Wiering, F., Veltkamp, R.C., Grijp, L.P.: Applying rhythmic similarity based on inner metric analysis to folksong research. In: International Society on Music Information Retrieval, pp. 293–296 (2007)

    Google Scholar 

  27. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput. Biol. 1(4), 337–348 (1994)

    Article  Google Scholar 

  28. Wang, S., Ewert, S., Dixon, S.: Robust joint alignment of multiple versions of a piece of music, pp. 83–88 (2014)

    Google Scholar 

Download references

Aknowledgments

The authors would like to thank Meinard Müller and Hendrik Vincent Koops for comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Bountouridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bountouridis, D., Wiering, F., Brown, D., Veltkamp, R.C. (2017). Towards Polyphony Reconstruction Using Multidimensional Multiple Sequence Alignment. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55750-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55749-6

  • Online ISBN: 978-3-319-55750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics