Evolving Mondrian-Style Artworks | SpringerLink
Skip to main content

Evolving Mondrian-Style Artworks

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10198))

Abstract

This paper describes a Genetic Algorithm (GA) software system for automatically generating Mondrian-style symmetries and abstract artwork. The research examines Mondrian’s paintings from 1922 through 1932 and analyses the balances, color symmetries and composition in these paintings. We used a set of eleven criteria to define the automated system. We then translated and formulized these criteria into heuristics and criteria that can be measured and used in the GA algorithm. The software includes a module that provides a range of GA parameter values for interactive selection. Despite a number of limitations, the method yielded high quality results with colors close to those of Mondrian and rectangles that did not overlap and fit the canvas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Milner, J.: Mondrian. Phaidon Press, New York (2011)

    Google Scholar 

  2. Seuphor, M.: Piet Mondrian: Life and Work. Harry N. Abrams Inc, New York (1957)

    Google Scholar 

  3. Henning, E.B.: A classic painting by Piet Mondrian. Bull. Clevel. Museum Art 55(8), 243–249 (1968)

    Google Scholar 

  4. Hill, A.: Art and mathesis: Mondrian’s structures. Leonardo 1(3), 233–242 (1968)

    Article  Google Scholar 

  5. Taylor, R.: Pollock, Mondrian and nature: recent scientific investigations. Chaos Complex. Lett. 1(3), 265–277 (2003)

    MATH  Google Scholar 

  6. Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  7. Locher, P.J.: The usefulness of eye movement recordings to subject an aesthetic episode with visual art to empirical scrutiny. Psychol. Sci. 48(2), 106–114 (2006)

    Google Scholar 

  8. McManus, I.C., Cheema, B., Stoker, J.: The aesthetics of composition: a study of Mondrian. Empirical Stud. Arts 11, 83–94 (1993)

    Article  Google Scholar 

  9. Latto, R., Brain, D., Kelly, B.: An oblique effect in aesthetics: Homage to Mondrian (1872–1944). Perception 29(8), 981–987 (2000)

    Article  Google Scholar 

  10. Noll, A.M.: Human or Machine: a subjective comparison of Piet Mondrian’s “composition with Lines” (1917) and a computer-generated picture. Psychol. Record 16, 1–10 (1966)

    Google Scholar 

  11. Schufreider, G.: Overpowering the center: three compositions by Mondrian. J. Aesthetics Art Criticism 44(1), 13–28 (1985)

    Article  Google Scholar 

  12. Vaughan, W.: The Mondrian Maker. Supplement to Computers and Art History Group, First Issue (1985)

    Google Scholar 

  13. Michelson, A.: De Stijl, Its Other Face: Abstraction and Cacophony, or What Was the Matter with Hegel? (1982). Retrieved http://www.jstor.org/stable/778361

  14. Blotkamp, C.: Mondrian: The Art of Destruction. Reaktion Books, London (1994)

    Google Scholar 

  15. Bois, Y.A., Joosten, J., Rudenstine, A.Z., Janssen, H.: Piet Mondrian 1872–1944. Leonardo Arte, Milan (1994)

    Google Scholar 

  16. Overy, P.: Here-I-Am-Again-Piet: a Mondrian for the Nineties. Art Hist. 18(4), 584–595 (1995)

    Article  Google Scholar 

  17. Zhang, K., Yu, J.: Generation of kandinsky art. Leonardo 49(1), 48–54 (2016)

    Article  Google Scholar 

  18. Eiben, E.: Evolutionary reproduction of Dutch masters: the Mondrian and Escher evolvers. In: Juan Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series, pp. 211–224. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. de Silva Garza, A.G., Lores, A.Z.: A cognitive evaluation of a computer system for generating Mondrian-like artwork. In: Gero, J.S. (ed.) Design Computing and Cognition ’04, pp. 79–96. Kluwer Academic Publishers, Worcester, Massachusetts (2004)

    Chapter  Google Scholar 

  20. Bentley, P., Corne, D.W. (eds.): Creative Evolutionary Systems. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  21. Di Paola, S., Gabora, L.: Incorporating characteristics of human creativity into an evolutionary art algorithm. Genet. Program Evolvable Mach. 10(2), 97–110 (2009). doi:10.1007/s10710-008-9074-x

    Article  Google Scholar 

  22. Fogelman, M. (2011) http://fogleman.tumblr.com/post/11959143268/procedurally-generating-images-in-the-style-of

  23. Machado, P., Correia, J.: Semantic aware methods for evolutionary art. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 301–308. ACM, New York (2014). doi:http://dx.doi.org/10.1145/2576768.2598293

  24. Heijer, E., Eiben, A.E.: Evolving pop art using scalable vector graphics. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 48–59. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29142-5_5

    Chapter  Google Scholar 

  25. Bergen, S.R.: Evolving stylized images using a user-interactive genetic algorithm. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009, New York, NY, USA, ACM, pp. 2745–2752 (2009)

    Google Scholar 

  26. Cook, T.E.: GAUGUIN: generating art using genetic algorithms and user input naturally. In: Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, London, United Kingdom (2007)

    Google Scholar 

  27. Silva Garza, A.G., Lores, A.Z.: Case-based art. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 237–251. Springer, Heidelberg (2005). doi:10.1007/11536406_20

    Chapter  Google Scholar 

  28. Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1991), Vol. 25, No. 4, pp. 319–328 (1991)

    Google Scholar 

  29. Romero, J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2007)

    Google Scholar 

  30. Trist, K., Ciesielski, V., Barile, P.: Can’t see the forest: using an evolutionary algorithm to produce an animated artwork. In: Huang, F., Wang, R.-C. (eds.) ArtsIT 2009. LNICSSITE, vol. 30, pp. 255–262. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11577-6_32

    Chapter  Google Scholar 

  31. Liu, H., Liu, X.: generative art images by complex functions based genetic algorithm. In: León-Rovira, N. (ed.) CAI 2007. ITIFIP, vol. 250, pp. 125–134. Springer, Heidelberg (2007). doi:10.1007/978-0-387-75456-7_13

    Chapter  Google Scholar 

  32. den Heijer, E., Eiben, A.E.: Using aesthetic measures to evolve art. In: IEEE Congress on Evolutionary Computation, pp. 311–320. IEEE Press (2010)

    Google Scholar 

  33. Johnson, M.G., Muday, J.A., Schirillo, J.A.: When viewing variations in paintings by mondrian, aesthetic preferences correlate with pupil size. Psychol. Aesthetics Creativity Arts 4(3), 161–167 (2010). doi:10.1037/a0018155

    Article  Google Scholar 

  34. Simon, D.: Evolutionary Optimization Algorithms. Wiley, Hoboken (2013)

    Google Scholar 

  35. Heijer, E.: Evolving glitch art. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 109–120. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36955-1_10

    Chapter  Google Scholar 

  36. Goldberg, D.E., Kalyanmoy, D.: A comparative analysis of selection schemes used in genetic algorithms. Found. Genet. Algorithms 1, 69–93 (1991)

    MathSciNet  Google Scholar 

  37. Chuang, Y.-C., Chen, C.-T., Hwang, C.: A real-coded genetic algorithm with a 74-direction-based crossover operator. Inf. Sci. 305, 320–348 (2015)

    Article  Google Scholar 

  38. Sivaraj, R., Ravichandran, T.: A review of selection methods in genetic algorithms. Int. J. Eng. Sci. Technol. 3(5), 3792–3797 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miri Weiss Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cohen, M.W., Cherchiglia, L., Costa, R. (2017). Evolving Mondrian-Style Artworks. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55750-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55749-6

  • Online ISBN: 978-3-319-55750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics