Evolutionary Image Transition Using Random Walks | SpringerLink
Skip to main content

Evolutionary Image Transition Using Random Walks

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10198))

Abstract

We present a study demonstrating how random walk algorithms can be used for evolutionary image transition. We design different mutation operators based on uniform and biased random walks and study how their combination with a baseline mutation operator can lead to interesting image transition processes in terms of visual effects and artistic features. Using feature-based analysis we investigate the evolutionary image transition behaviour with respect to different features and evaluate the images constructed during the image transition process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Images and videos are available at https://vimeo.com/anetaneumann.

References

  1. Romero, J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2008)

    Google Scholar 

  2. Antunes, R.F., Leymarie, F.F., Latham, W.H.: On writing and reading artistic computational ecosystems. Artif. Life 21(3), 320–331 (2015)

    Article  Google Scholar 

  3. Lambert, N., Latham, W.H., Leymarie, F.F.: The emergence and growth of evolutionary art: 1980–1993. In: International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2013, Anaheim, CA, USA, July 21–25, 2013, Art Gallery, 367–375. ACM (2013)

    Google Scholar 

  4. McCormack, J., d’Inverno, M. (eds.): Computers and Creativity. Springer, Heidelberg (2012)

    Google Scholar 

  5. Vinhas, A., Assunção, F., Correia, J., Ekárt, A., Machado, P.: Fitness and novelty in evolutionary art. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 225–240. Springer, Cham (2016). doi:10.1007/978-3-319-31008-4_16

    Chapter  Google Scholar 

  6. al-Rifaie, M.M., Bishop, J.M.: Swarmic paintings and colour attention. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 97–108. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36955-1_9

    Chapter  Google Scholar 

  7. Greenfield, G.: Avoidance drawings evolved using virtual drawing robots. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 78–88. Springer, Cham (2015). doi:10.1007/978-3-319-16498-4_8

    Google Scholar 

  8. Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press Inc., Orlando (1994)

    MATH  Google Scholar 

  9. Greenfield, G., Machado, P.: Ant- and ant-colony-inspired alife visual art. Artif. Life 21(3), 293–306 (2015)

    Article  Google Scholar 

  10. Machado, P., Correia, J.: Semantic aware methods for evolutionary art. In: Arnold, D.V., (ed.) Genetic and Evolutionary Computation Conference, GECCO 2014, Vancouver, BC, Canada, 12–16 July 2014, pp. 301–308. ACM (2014)

    Google Scholar 

  11. Sims, K.: Artificial evolution for computer graphics. In: Thomas, J.J., (ed.) Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1991, pp. 319–328. ACM (1991)

    Google Scholar 

  12. Hart, D.A.: Toward greater artistic control for interactive evolution of images and animation. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 527–536. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71805-5_58

    Google Scholar 

  13. Trist, K., Ciesielski, V., Barile, P.: An artist’s experience in using an evolutionary algorithm to produce an animated artwork. IJART 4(2), 155–167 (2011)

    Article  Google Scholar 

  14. Graf, J., Banzhaf, W.: Interactive evolution of images. In: Evolutionary Programming, pp. 53–65 (1995)

    Google Scholar 

  15. Karungaru, S., Fukumi, M., Akamatsu, N., Takuya, A.: Automatic human faces morphing using genetic algorithms based control points selection. Int. J. Innovative Comput. Inf. Control 3(2), 1–6 (2007)

    Google Scholar 

  16. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  17. Neumann, A., Alexander, B., Neumann, F.: The evolutionary process of image transition in conjunction with box and strip mutation. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 261–268. Springer, Cham (2016). doi:10.1007/978-3-319-46675-0_29

    Chapter  Google Scholar 

  18. Jansen, T., Sudholt, D.: Analysis of an asymmetric mutation operator. Evol. Comput. 18(1), 1–26 (2010)

    Article  Google Scholar 

  19. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17(3), 418–435 (2013)

    Article  Google Scholar 

  21. Lovász, L.: Random walks on graphs: A survey. In: Miklós, D., Sós, V.T., Szőnyi, T. (eds.) Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 353–398. János Bolyai Mathematical Society, Budapest (1996)

    Google Scholar 

  22. Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Cover times for brownian motion and random walks in two dimensions. Ann. Math. 160(2), 433–464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mersmann, O., Preuss, M., Trautmann, H.: Benchmarking evolutionary algorithms: Towards exploratory landscape analysis. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 73–82. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15844-5_8

    Google Scholar 

  24. Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neumann, F.: A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Ann. Math. Artif. Intell. 69(2), 151–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nallaperuma, S., Wagner, M., Neumann, F., Bischl, B., Mersmann, O., Trautmann, H.: A feature-based comparison of local search and the christofides algorithm for the travelling salesperson problem. In: Neumann, F., Jong, K.A.D., (eds.) Foundations of Genetic Algorithms XII, FOGA 2013, Adelaide, SA, Australia, 16–20 January 2013, pp. 147–160. ACM (2013)

    Google Scholar 

  26. Nallaperuma, S., Wagner, M., Neumann, F.: Analyzing the effects of instance features and algorithm parameters for max-min ant system and the traveling salesperson problem. Front. Robot. AI 2, 1–16 (2015)

    Article  Google Scholar 

  27. Poursoltan, S., Neumann, F.: A feature-based prediction model of algorithm selection for constrained continuous optimisation. CoRR abs/1602.02862 Conference version appeared in CEC 2016(2016)

    Google Scholar 

  28. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  30. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  31. Jolion, J.M.: Images and benford’s law. J. Math. Imaging Vis. 14(1), 73–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matkovic, K., Neumann, L., Neumann, A., Psik, T., Purgathofer, W.: Global contrast factor-a new approach to image contrast. Comput. Aesthetics 2005, 159–168 (2005)

    Google Scholar 

  33. Hasler, D., Suesstrunk, S.E.: Measuring colorfulness in natural images. In: Electronic Imaging 2003, International Society for Optics and Photonics, pp. 87–95 (2003)

    Google Scholar 

  34. den Heijer, E., Eiben, A.E.: Investigating aesthetic measures for unsupervised evolutionary art. Swarm Evol. Comput. 16, 52–68 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported through Australian Research Council (ARC) grant DP140103400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Neumann, A., Alexander, B., Neumann, F. (2017). Evolutionary Image Transition Using Random Walks. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55750-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55749-6

  • Online ISBN: 978-3-319-55750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics