Clustering Agents for the Evolution of Autonomous Musical Fitness | SpringerLink
Skip to main content

Clustering Agents for the Evolution of Autonomous Musical Fitness

  • Conference paper
  • First Online:
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10198))

Abstract

This paper presents a cyclical system that generates autonomous fitness functions or Agents for evolving short melodies. A grammar is employed to create a corpus of melodies, each of which is composed of a number of segments. A population of Agents are evolved to give numerical judgements on the melodies based on the spacing of these segments. The fitness of an individual Agent is calculated in relation to its clustering of the melodies and how much this clustering correlates with the clustering of the entire Agent population. A preparatory run is used to evolve Agents using 30 melodies of known ‘clustering’. The full run uses these Agents as the initial population in evolving a new best Agent on a separate corpus of melodies of random distance measures. This evolved Agent is then used in combination with the original melody grammar to create a new melody which replaces one of those from the initial random corpus. This results in a complex adaptive system creating new melodies without any human input after initialisation. This paper describes the behaviour of each phase in the system and presents a number of melodies created by the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biles, J.A.: Straight-ahead jazz with GenJam: a quick demonstration. In: MUME 2013 Workshop (2013)

    Google Scholar 

  2. Boden, M.A.: The Creative Mind: Myths and Mechanisms. Psychology Press, New York (2004)

    Google Scholar 

  3. Boden, M.A.: Computer models of creativity. AI Mag. 30(3), 23 (2009)

    Google Scholar 

  4. Brabazon, A., O’Neill, M., McGarraghy, S.: Grammatical evolution. In: Brabazon, A., O’Neill, M., McGarraghy, S. (eds.) Natural Computing Algorithms, pp. 357–373. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  5. Bringsjord, S., Bello, P., Ferrucci, D.: Creativity, the turing test, and the (better) lovelace test. In: Moor, J.H. (ed.) The Turing Test, pp. 215–239. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Cook, M., Colton, S.: Generating code for expressing simple preferences: moving on from hardcoding and randomness. In: Proceedings of the Sixth International Conference on Computational Creativity June, p. 8 (2015)

    Google Scholar 

  7. Dahlstedt, P.: Autonomous evolution of complete piano pieces and performances. In: Proceedings of Music AL Workshop. Citeseer (2007)

    Google Scholar 

  8. Eigenfeldt, A., Pasquier, P.: Populations of populations: composing with multiple evolutionary algorithms. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 72–83. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29142-5_7

    Chapter  Google Scholar 

  9. Göksu, H., Pigg, P., Dixit, V.: Music composition using genetic algorithms (GA) and multilayer perceptrons (MLP). In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1242–1250. Springer, Heidelberg (2005). doi:10.1007/11539902_158

    Chapter  Google Scholar 

  10. Hickinbotham, S., Stepney, S.: Augmenting live coding with evolved patterns. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 31–46. Springer, Cham (2016). doi:10.1007/978-3-319-31008-4_3

    Chapter  Google Scholar 

  11. Jenks, G.F.: The data model concept in statistical mapping. In: International Yearbook of Cartography, vol. 7(1), pp. 186–190 (1967)

    Google Scholar 

  12. Lehman, J., Stanley, K.O.: Efficiently evolving programs through the search for novelty. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 837–844. ACM (2010)

    Google Scholar 

  13. Loughran, R., McDermott, J., O’Neill, M.: Grammatical evolution with zipf’s law based fitness for melodic composition. In: Sound and Music Computing Conference, Maynooth (2015)

    Google Scholar 

  14. Loughran, R., McDermott, J., O’Neill, M.: Tonality driven piano compositions with grammatical evolution. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2168–2175. IEEE (2015)

    Google Scholar 

  15. Loughran, R., McDermott, J., O’Neill, M.: Grammatical music composition with dissimilarity driven hill climbing. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 110–125. Springer, Cham (2016). doi:10.1007/978-3-319-31008-4_8

    Chapter  Google Scholar 

  16. Loughran, R., O’Neill, M.: Generative music evaluation: why do we limit to ‘human’?. In: Computer Simulation of Musical Creativity (CSMC), Huddersfield, UK (2016)

    Google Scholar 

  17. Miranda, E.R.: On the evolution of music in a society of self-taught digital creatures. Digit. Creativity 14(1), 29–42 (2003)

    Article  Google Scholar 

  18. Munoz, E., Cadenas, J., Ong, Y.S., Acampora, G.: Memetic music composition. IEEE Trans. Evol. Comput. 20(1), 1–15 (2016)

    Article  Google Scholar 

  19. Pearce, M., Wiggins, G.: Towards a framework for the evaluation of machine compositions. In: Proceedings of the AISB 2001 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences, pp. 22–32. Citeseer (2001)

    Google Scholar 

  20. Scirea, M., Togelius, J., Eklund, P., Risi, S.: MetaCompose: a compositional evolutionary music composer. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 202–217. Springer, Cham (2016). doi:10.1007/978-3-319-31008-4_14

    Chapter  Google Scholar 

  21. Shao, J., McDermott, J., O’Neill, M., Brabazon, A.: Jive: a generative, interactive, virtual, evolutionary music system. In: Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 341–350. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12242-2_35

    Chapter  Google Scholar 

  22. Stanley, K.O., Lehman, J.: Why Greatness Cannot Be Planned: The Myth of the Objective. Springer, Heidelberg (2015)

    Book  Google Scholar 

  23. Thywissen, K.: GeNotator: an environment for exploring the application of evolutionary techniques in computer-assisted composition. Organised Sound 4(02), 127–133 (1999)

    Article  Google Scholar 

  24. Todd, P.M., Werner, G.M.: Frankensteinian methods for evolutionary music. In: Griffith, N., Todd, P.M. (eds.) Musical Networks: Parallel Distributed Perception and Performace, p. 313. MIT Press, Cambridge (1999)

    Google Scholar 

  25. Waschka II, R.: Composing with genetic algorithms: GenDash. In: Miranda, E.R., Biles, J.A. (eds.) Evolutionary Computer Music, pp. 117–136. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is part of the App’Ed (Applications of Evolutionary Design) project funded by Science Foundation Ireland under grant 13/IA/1850. We would like to thank the anonymous reviewers for their suggestions on how to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róisín Loughran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Loughran, R., O’Neill, M. (2017). Clustering Agents for the Evolution of Autonomous Musical Fitness. In: Correia, J., Ciesielski, V., Liapis, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2017. Lecture Notes in Computer Science(), vol 10198. Springer, Cham. https://doi.org/10.1007/978-3-319-55750-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55750-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55749-6

  • Online ISBN: 978-3-319-55750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics