Reader’s Choice | SpringerLink
Skip to main content

Reader’s Choice

A Recommendation Platform

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10179))

Included in the following conference series:

Abstract

The majority of book sellers usually abstains from offering books that are of too little interest to potential customers. Thence, such sellers might face profit losses, because the product popularity can vary from place to place. In order to avoid these losses, this disquisition introduces Reader’s Choice – a system that recommends sellers to offer books based on the interest of people in different locations. Generally, most residents in a proximity share similar interests. In accordance with the search trends, Reader’s Choice can learn and output the vogue of books in various regions. Thereby, the searches and purchases help Reader’s Choice to determine where books are frequently sought respectively bought. Accordingly, Reader’s Choice can suggest products in regions where they were more often searched and merchandised. Basically, Reader’s Choice analyzes trends in datasets to draw insights. It employs Hadoop for the storage and analysis of search results and deals. A prudent performance scrutiny has testified Reader’s Choice for the best functionality and the second-best information retrieval metrics among competitive book recommendation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer US, Boston (2010). https://dx.doi.org/10.1007/978-0-387-85820-3_7

    Google Scholar 

  2. Buckland, M., Gey, F.: The relationship between recall and precision. J. Am. Soc. Inf. Sci. 45(1), 12–19 (1994). https://dx.doi.org/10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L

  3. Calazans, J., Cavalcanti, G., Lucian, R.: Social media as cultural products promotion platform: the GetGlue case. Animus 12(24), 202–218 (2013). https://dx.doi.org/10.5902/217549778528

    Article  Google Scholar 

  4. Chandak, M., Girase, S., Mukhopadhyay, D.: Introducing hybrid technique for optimization of book recommender system. Procedia Comput. Sci. 45, 23–31 (2015). https://dx.doi.org/10.1016/j.procs.2015.03.075

    Article  Google Scholar 

  5. Cook, J.: Shelfari an online meeting place for bibliophiles (2006). https://www.seattlepi.com/business/article/Shelfari-an-online-meeting-place-for-bibliophiles-1216875.php

  6. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 233–240. ACM, June 2006. https://dx.doi.org/10.1145/1143844.1143874

  7. Fletcher, R.H., Fletcher, S.W., Fletcher, G.S.: Clinical Epidemiology: The Essentials. Lippincott Williams & Wilkins, Philadelphia (2012)

    MATH  Google Scholar 

  8. Haupt, J.: Last.fm: people-powered online radio. Music Ref. Serv. Q. 12(1–2), 23–24 (2009). https://dx.doi.org/10.1080/10588160902816702

    Article  Google Scholar 

  9. Hvass, A.: Cataloguing with librarything: as easy as 1,2,3!. Libr. Hi Tech News 25(10), 5–7 (2008). https://doi.org/10.1108/07419050810949995

    Article  Google Scholar 

  10. Layton, J.: How Pandora radio works, May 2006. https://computer.howstuffworks.com/internet/basics/pandora.htm

  11. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003). https://dx.doi.org/10.1109/MIC.2003.1167344

    Article  Google Scholar 

  12. Magdy, W., Jones, G.J.F.: PRES: a score metric for evaluating recall-oriented information retrieval applications. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, pp. 611–618. ACM, New York, July 2010. https://dx.doi.org/10.1145/1835449.1835551

  13. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the Fifth ACM Conference on Digital Libraries, DL 2000, pp. 195–204. ACM, New York, June 2000. https://dx.doi.org/10.1145/336597.336662

  14. Naik, Y., Trott, B.: Finding good reads on goodreads: readers take RA into their own hands. Ref. User Serv. Q. 51(4), 319–323 (2012). https://dx.doi.org/10.5860/rusq.51n4.319

    Article  Google Scholar 

  15. Nirwan, H., Verma, O.P., Kanojia, A.: Personalized hybrid book recommender system using neural network. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1281–1288, March 2016

    Google Scholar 

  16. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_10

    Chapter  Google Scholar 

  17. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook. Springer US, Boston (2015). https://dx.doi.org/10.1007/978-1-4899-7637-6

    Chapter  Google Scholar 

  18. Schmierer, H.F., Pasternack, H.: Study of current and potential uses of international standard book number in united states libraries. Technical report, Committee for the Coordination of National Bibliographic Control, Washington, DC, March 1977. http://files.eric.ed.gov/fulltext/ED174264.pdf

  19. Sharma, S.: Big data landscape. Int. J. Sci. Res. Publ. 3(6) (2013). http://www.ijsrp.org/research-paper-0613.php

  20. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006). doi:10.1007/11941439_114

    Chapter  Google Scholar 

  21. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2(2), 1626–1629 (2009). https://dx.doi.org/10.14778/1687553.1687609

    Article  Google Scholar 

  22. Ting, K.M.: Precision and recall. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, p. 781. Springer US, Boston (2010). https://dx.doi.org/10.1007/978-0-387-30164-8_652

    Google Scholar 

  23. Zuckerman, E.: Ethan Zuckerman quotes, January 2017. http://www.azquotes.com/quote/1216776

Download references

Acknowledgments

Many thanks to Bettina Baumgartner from the University of Vienna for proofreading this paper!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Fahrnberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dey, S.K., Fahrnberger, G. (2017). Reader’s Choice. In: Bao, Z., Trajcevski, G., Chang, L., Hua, W. (eds) Database Systems for Advanced Applications. DASFAA 2017. Lecture Notes in Computer Science(), vol 10179. Springer, Cham. https://doi.org/10.1007/978-3-319-55705-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55705-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55704-5

  • Online ISBN: 978-3-319-55705-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics