Abstract
An upper bound of the length of impossible differentials for an SPN structure was presented at EUROCRYPT 2016. This paper mainly focuses on the lengths of impossible differentials for two specific SPN structures. The details of the S-boxes could be exploited to construct longer impossible differentials for ciphers adopting these structures. For Kuznyechik and the internal permutation of PHOTON, we can construct 3-round and 5-round impossible differentials, respectively. The lengths of impossible differentials of these two ciphers are 1 more round compared with the lengths of impossible differentials of the structures deduced from the corresponding ciphers.
The work in this paper is supported by the National Natural Science Foundation of China (No: 61672530, 61402515), the Foundation of Science and Technology on Information Assurance laboratory (No: KJ-14-003), and the Research Fund for the doctoral program of Higher Education of China (RFDP No: 2012150112004).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, New York (1993)
Knudsen, L.R.: DEAL – A 128-bit Block Cipher. Technical report, Department of Informatics, University of Bergen, Norway (1998)
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_2
Blondeau, C.: Impossible differential attack on 13-round Camellia-192. Inf. Process. Lett. 115(9), 660–666 (2015)
Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8_10
Li, R., Sun, B., Li, C.: Impossible differential cryptanalysis of SPN ciphers. IET Inf. Secur. 5(2), 111–120 (2011)
Sun, B., Zhang, P., Li, C.: Impossible differential and integral cryptanalysis of zodiac. J. Softw. 22(8), 1911–1917 (2011)
Kim, J., Hong, S., Lim, J.: Impossible differential cryptanalysis using matrix method. Discrete Math. 310(5), 988–1002 (2010)
Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible differentials of block cipher structures. Inf. Sci. 263, 211–220 (2014)
Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34931-7_17
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, Berlin (2002)
Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89754-5_22
Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossible differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17401-8_20
Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon, E.-J., Lee, S., Lee, J., Chee, S., Han, D., Hong, J.: New block cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24691-6_32
Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of reduced round ARIA and Camellia. J. Comput. Sci. Technol. 22(3), 449–456 (2007)
Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: a 128-Bit block cipher suitable for multiple platforms-design and analysis. In: Stinson, D.R., Tavares, S.E. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)
Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 95–115. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_5
Sun, B., Liu, M., Guo, J., Rijmen, V., Li, R.: Provable security evaluation of structures against impossible differential and zero correlation linear cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 196–213. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_8
Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Leurent, G.: New insights on impossible differential cryptanalysis. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 243–259. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28496-0_15
Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: a bit-slice ultra-lightweight block cipher suitable for multiple platforms. Sci. China Inf. Sci. 58(12), 1–15 (2015). Springer, Heidelberg
Shishkin, V., Dygin, D., Lavrikov, I., Marshalko, G., Rudskoy, V., Trifonov, D.: Low-weight and Hi-End: draft Russian encryption standard. In: CTCrypt, vol. 2014, pp. 183–188 (2014)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 2nd edn. North-Holland Publishing Company, Amsterdam (1986)
Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9_22
Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_13
Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the efficiency of impossible differential cryptannalysis of reduced Camellia and MISTY1. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Appendices
A The Linear Transformation Matrix P and the Inverse Transformation Matrix \(P^{-1}\) of Kuznyechik
B Proof of Theorem 2
To prove Theorem 2, we only need calculate \(\gamma (P)\) and \(\gamma (P^{-1})\). The linear transformation \(P=MC\circ SR\), which is an \(d^2\times d^2\) matrix. According to the definition of \(\gamma (P)\), we have \(P^*\ge 0, \gamma (P)>1\), where \(P^*\) is the characteristic matrix of P. Thus we consider whether \((P^*)^2>0\).
We denote \((P^*)^2=(q_{ij})\), thus \(q_{ij}=0\) means that the i-th output byte of the 2-round SPN cipher is independent of the j-th input byte. Furthermore, when \(Y=(P\circ S)^2(X)\), we denote \(X=(x_0, x_1, \cdots , x_{d^2-1}), Y=(y_0, y_1, \cdots , y_{d^2-1})\), where \(x_i,y_i\in \mathbb {F}_{2^n}\). If we can prove that any \(x_i\) is dependent on all \(y_j\), then \((P^*)^2>0\).
Assume that \(X_1=(\underbrace{0,0,\ldots ,0}_{i-1},x_i,0,\ldots ,0), x_i\in \mathbb {F}_{2^n}^{*}\), \(Y_1=S(X_1)\), there is only one element of \(Y_1\) related to \(x_i\). We denote \(Y_2=P(Y_1)=MC\circ SR(Y_1)\), since the MC matrix is a \(d\times d\) MDS matrix, there is one column of \(Y_2\) which is viewed as a \(d\times d\) matrix related to \(x_i\). We denote \(Y=P\circ S(Y_2)\), since the index transformation of ShiftRows is a permutation and the MC matrix is a \(d\times d\) MDS matrix, all elements of Y are dependent on \(x_i\).
Therefore, \(\gamma (P)=2\). Similarly, with the same method, we get \(\gamma (P^{-1})=2\). Furthermore, \(\gamma (P)+\gamma (P^{-1})=4\). Note that we can construct 4-round impossible differentials for \(\varepsilon ^(2)(n,d)\) when the input difference \(\alpha \) and the output difference \(\beta \) such that \(H(\alpha )=H(\beta )=1\).
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Shen, X., Liu, G., Sun, B., Li, C. (2017). Impossible Differentials of SPN Ciphers. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-54705-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54704-6
Online ISBN: 978-3-319-54705-3
eBook Packages: Computer ScienceComputer Science (R0)