Extended Multi-resolution Local Patterns - A Discriminative Feature Learning Approach for Colonoscopy Image Classification | SpringerLink
Skip to main content

Extended Multi-resolution Local Patterns - A Discriminative Feature Learning Approach for Colonoscopy Image Classification

  • Conference paper
  • First Online:
Computer-Assisted and Robotic Endoscopy (CARE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10170))

Included in the following conference series:

  • 1058 Accesses

Abstract

We propose a novel local image descriptor called the Extended Multi-resolution Local Patterns, and a discriminative probabilistic framework for learning its parameters together with a multi-class image classifier. Our approach uses training data with image-level labels to learn the features which are discriminative for multi-class colonoscopy image classification. Experiments on a three class (abnormal, normal, uninformative) white-light colonoscopy image dataset with 2800 images show that the proposed feature perform better than popular hand-designed features used in the medical as well as in the computer vision literature for image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.vision.caltech.edu/Image_Datasets/Caltech101/.

  2. 2.

    Tesla K40 GPU used for this research was donated by the NVIDIA Corporation.

References

  1. Atkin, W., Cook, C., Cuzick, J., Edwards, R., Northover, J., Wardle, J.: Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. Lancet 132, 1624–1633 (2010)

    Article  Google Scholar 

  2. Wallace, M.: Improving colorectal adenoma detection: technology or technique? Gastroenterology 132, 1221–1223 (2007)

    Article  Google Scholar 

  3. Bressler, B., Paszat, L.F., Chen, Z., Rothwell, D.M., Vinden, C., Rabeneck, L.: Rates of new or missed colorectal cancers after colonoscopy and their risk factors: a population-based analysis. Gastroenterology 132(1), 96–102 (2007)

    Article  Google Scholar 

  4. Arnold, M., Ghosh, A., Lacey, G., Patchett, S., Mulcahy, H.: Indistinct frame detection in colonoscopy videos. In: Machine Vision and Image Processing Conference, pp. 47–52(2009)

    Google Scholar 

  5. Karkanis, S.A., Iakovvidis, D.K., Maroulis, D.E., Karras, D.A., Tzivras, M.: Computer aided tumor detection in endoscopic video using color wavelet features. IEEE Trans. IT Biomed. 7, 141–152 (2003)

    Article  Google Scholar 

  6. Khun, P.C., Zhuo, Z., Yang, L.Z., Liyuan, L., Jiang, L.: Feature selection and classification for wireless capsule endoscopic frames. In: Biomedical and Pharmaceutical Engineering, pp. 1–6 (2009)

    Google Scholar 

  7. Lima, C., Barbosa, D., Ramos, A., Tavares, A., Montero, L., Carvalho, L.: Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions. In: IEEE Engineering in Medicine and Biology Society, pp. 1242–1245 (2008)

    Google Scholar 

  8. Manivannan, S., Wang, R., Trucco, E., Hood, A.: Automatic normal-abnormal video frame classification for colonoscopy. In: IEEE International Symposium on Biomedical Imaging, pp. 644–647 (2013)

    Google Scholar 

  9. Becker, C.J., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: Medical Image Computing and Computer-Assisted Intervention, pp. 526–533 (2013)

    Google Scholar 

  10. Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors. IEEE Pattern Anal. Mach. Intell. 33, 43–57 (2011)

    Article  Google Scholar 

  11. Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using convex optimisation. IEEE Pattern Anal. Mach. Intell. 36, 1573–1585 (2014)

    Article  Google Scholar 

  12. Philbin, J., Isard, M., Sivic, J., Zisserman, A.: Descriptor learning for efficient retrieval. In: European Conference on Computer Vision, pp. 677–691 (2010)

    Google Scholar 

  13. Matthew, Z., Rob, F.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833 (2014)

    Google Scholar 

  14. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  16. Winder, S., Hua, G., Brown, M.: Picking the best daisy. In: IEEE Computer Vision and Pattern Recognition, pp. 178–185 (2009)

    Google Scholar 

  17. Manivannan, S., Li, W., Akbar, S., Wang, R., Zhang, J., McKenna, S.J.: An automated pattern recognition system for classifying indirect immunofluorescence images of HEp-2 cells and specimens. Pattern Recogn. 51, 12–26 (2016)

    Article  Google Scholar 

  18. Manivannan, S., Li, W., Akbar, S., Wang, R., Zhang, J., McKenna, S.J.: HEp-2 cell classification using multi-resolution local patterns and ensemble SVMs. In: I3A 1st workshop on Pattern Recognition Techniques for Indirect Immunoflurescence Images, in International Conference on Pattern Recognition (2014)

    Google Scholar 

  19. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: IEEE Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  20. Zhen, X., Shao, L., Zheng, F.: Discriminative embedding via image-to-class distances. In: British Machine Vision Conference (2014)

    Google Scholar 

  21. Wang, Z., Hu, Y., Chia, L.T.: Image-to-class distance metric learning for image classification. In: European Conference on Computer Vision, pp. 706–719 (2010)

    Google Scholar 

  22. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: ACM Knowledge Discovery and Data Mining, pp. 245–250 (2001)

    Google Scholar 

  23. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: IEEE Computer Vision and Pattern Recognition, pp. 3360–3367 (2010)

    Google Scholar 

  24. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  25. Engelhardt, S., Ameling, S., Paulus, D., Wirth, S.: Features for classification of polyps in colonoscopy. In: CEUR Workshop Proceedings (2010)

    Google Scholar 

  26. Maroulis, D.E., Iakovidis, D.K., Karkanis, S.A., Karras, D.A.: CoLD: a versatile detection system for colorectal lesions in endoscopy video-frames. Comput. Methods Programs Biomed. 70, 151–166 (2003)

    Article  Google Scholar 

  27. Li, W., Manivannan, S., Zhang, J., Trucco, E., McKenna, S.J.: Gland segmentation in colon histology images using hand-crafted features and convolutional neural networks. In: IEEE International Symposium on Biomedical Imaging (2016)

    Google Scholar 

  28. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyamalan Manivannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Manivannan, S., Trucco, E. (2017). Extended Multi-resolution Local Patterns - A Discriminative Feature Learning Approach for Colonoscopy Image Classification. In: Peters, T., et al. Computer-Assisted and Robotic Endoscopy. CARE 2016. Lecture Notes in Computer Science(), vol 10170. Springer, Cham. https://doi.org/10.1007/978-3-319-54057-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54057-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54056-6

  • Online ISBN: 978-3-319-54057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics