Abstract
Generally, extracting only expected knowledge from data is not sufficient since unexpected ones can hide useful information concerning the data behavior. These information can be further used to optimize the current state. This has lead to the outlier detection. It refers to the data mining task that aims to find abnormal points or sequence of data hidden in the dataset. In fact, due to the emergence of new technologies, applications often generate and consume data in form of streams. This data differs from the static one. Therefore, traditional techniques cannot be used. Hence, convenient ones suitable to the data stream nature must be applied. In this paper, we will review different techniques of outlier detection in the data streams. In addition, we shall describe different approaches based on these techniques in order to establish a comparative study based on different criterion. This study aims to help users and facilitates the choice of the appropriate algorithm for a certain context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.C.: Data Mining: The Textbook. Springer, Switzerland (2015)
Karimian, S.H., Kelarestaghi, M., Hashemi, S.: I-inclof: improved incremental local outlier detection for data streams. In: 16th CSI International Symposium on Artificial Intelligence and Signal Processing (2012)
Beigi, M.S., Ebadollahi, S., Chang, S.F., Verma, D.C.: Anomaly detection in information streams without prior domain knowledge. IBM J. Res. Dev. 55, 550–560 (2011)
Thakkar, P., Vala, J., Prajapati, V.: Survey on outlier detection in data stream. Int. J. Comput. Appl. 136, 13–16 (2016)
Sadik, M.S., Gruenwald, L.: Research issues in outlier detection for data streams. ACM SIGKDD Explor. 15, 33–40 (2014)
Stevanovic, D., Vlajic, N.: Next generation application-layer DDoS defences: applying the concepts of outlier detection in data streams with concept drift. In: 2014 13th International Conference on Machine Learning and Applications (2014)
Miller, Z., Deitrick, W., Hu, W.: Anomalous network packet detection using data stream mining. J. Inf. Secur. 2, 158–168 (2011)
Cao, L., Yang, D., Wang, Q., Yu, Y., Wang, J., Rundensteiner, E.A.: Scalable distance-based outlier detection over high-volume data streams. In: 30th International Conference on Data Engineering (2014)
Angiulli, F., Fassetti, F.: Distance-based outlier queries in data streams: the novel task and algorithms. Data Min. Knowl. Disc. 20(2), 290–324 (2010)
Yang, D., Rundensteiner, E., Ward, M.: Neighbor-based pattern detection for windows over streaming data. In: EDBT 2009, pp. 529–540 (2009)
Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K., Manolopoulos, Y.: Continuous monitoring of distance-based outliers over data streams. In: The 27th International Conference on Data Engineering (ICDE), pp. 135–146 (2011)
Kontaki, M., Gounarisn, A., Papadopoulos, A.N., Tsichlas, K., Manolopoulos, Y.: Effcient and flexible algorithms for monitoring distance based outliers over data streams. Inf. Syst. 55(C), 37–53 (2016)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density based local outliers. In: 2000 ACM SIGMOD International Conference on Management of Data, vol. 29(2), pp. 93–104 (2000)
Pokrajac, D., Lazarevic, A., Latecki, L.J.: Incremental local outlier detection for data streams. In: IEEE Symposium on Computational Intelligence and Data Mining, pp. 504–515 (2007)
Christopher, T., Divya, M.T.: A comparative analysis of hierarchical and partitioning clustering algorithms for outlier detection in data streams. Int. J. Adv. Res. Comput. Commun. Eng. (2015)
Mathur, N., Tiwari, M., Khandelwal, S.: Increased performance factor for the best clustering algorithm. Int. J. Eng. Tech. Res. 3 (2015)
Yogita, T.D.: A framework for outlier detection in evolving data streams by weighting attributes in clustering. In: 2nd International Conference on Communication Computing and Security (2012)
Koupaie, H.M., Ibrahim, S., Hosseinkhani, J.: Outlier detection in stream data by clustering method. Int. J. Adv. Comput. Sci. Inf. Technol. 2, 25–34 (2013)
Assent, I., Kranen, P., Baldauf, C., Seidl, T.: AnyOut: anytime outlier detection on streaming data. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7238, pp. 228–242. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29038-1_18
Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: 2006 SIAM Conference on Data Mining, pp. 328–339 (2006)
Li-xiong, L., Jing, K., Yun-fei, G., Hai, H.: A three-step clustering algorithm over an evolving data stream. In: IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 160–164 (2009)
Kumar, M., Sharma, A.: Mining of data stream using DDenStream clustering algorithm. In: 2013 International Conference in MOOC on Data Engineering, pp. 315–320 (2013)
Yogita, T.D.: Unsupervised outlier detection in streaming data using weighted clustering. In: 12th International Conference on Intelligent Systems Design and Applications, pp. 160–164 (2012)
Gurav, R.B., Rangdale, S.: Hybrid approach for outlier detection in high dimensional dataset. Int. J. Sci. Res. 3 (2014)
Solaimani, M., Iftekhar, M., Khan, L.: Statistical technique for online anomaly detection using spark over heterogeneous data from multi-source VMware performance data. In: IEEE International Conference on Big Data (2014)
Kumar Samparthi, V.S., Verma, H.K.: Outlier detection of data in wireless sensor networks using kernel density estimation. Int. J. Comput. Appl. 5 (2010)
Uddin, M.S., Kuh, A., Weng, Y., Ili’c, M.: Online bad data detection using kernel density estimation. In: IEEE Power and Energy Sociaty and General Meeting (2015)
Tang, X., Li, G., Chen, G.: Fast detecting outliers over online data streams. In: International Conference on Information Engineering and Computer Science, pp. 1–4 (2009)
Lin, F., Le, W., Bo, J.: Research on maximal frequent pattern outlier factor for online high dimensional time-series outlier detection. J. Convergence Inf. Technol. 5, 66–71 (2010)
Dominic, D.D., Said, A.M.: Network anomaly detection approach based on frequent pattern mining technique. In: International Conference on Computational Science and Technology (2014)
Said, A.M., Dominic, P.D.D., Faye, L.: Data stream outlier detection approach based on frequent pattern mining technique. Int. J. Bus. Inf. Syst. 20, 55–70 (2015)
Zhang, Y., Meratnia, N., Havinga, P.: Outlier detection techniques for wireless sensor networks: a survey. IEEE Commun. Surv. Tutorials 12, 159–170 (2010)
Kale, A., Ingle, M.D.: SVM based feature extraction for novel class detection from streaming data. Wireless Pers. Commun. J. 110, 1–3 (2015)
Masud, M.M., Gao, J., Han, J., Khan, L., Thuraising-ham, B.M.: Classification and adaptive novel class detection of feature-evolving data streams. IEEE Trans. Knowl. Data Eng. 25 (2013)
Uddin, M.S., Kuh, A.: Online least-squares one-class support vector machine for outlier detection in power grid data. In: IEEE International Conference on Acoustics Speech and Signal Processing (2016)
Ye, H., Kitagawa, H., Xia, J.: Continuous angle-based outlier detection on high-dimensional data streams. In: 19th International Database Engineering and Applications Symposium, pp. 162–167 (2015)
Kriegel, H.P., Hubert, M.S., Zimek, A.: Angle based outlier detection in high-dimensional data. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2008)
Salperwyck, C.: Apprentissage incrémental en-ligne sur flux de données. Ph.D. thesis, University Charles de Gaulle (2012)
Marascu, A.: Extraction de motifs séquentiels dans les flux de données. Ph.D. thesis, Université de Nice Sophia Antipolis (2009)
Salehi, M., Leckie, C., Bezdek, J., Vaithianathan, T.: Local outlier detection for data streams in sensor networks: revisiting the utility problem invited paper. In: 10th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Souiden, I., Brahmi, Z., Toumi, H. (2017). A Survey on Outlier Detection in the Context of Stream Mining: Review of Existing Approaches and Recommadations. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-53480-0_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53479-4
Online ISBN: 978-3-319-53480-0
eBook Packages: EngineeringEngineering (R0)