Abstract
Blood-vessel segmentation in cerebral angiograms is a valuable tool for medical diagnosis. However, manual blood-vessel segmentation is a time consuming process that requires high levels of expertise. The automatic detection of blood vessels can not only improve efficiency but also allow for the development of automatic diagnosis systems. Vessel detection can be approached as a binary classification problem, identifying each pixel as a vessel or non-vessel. In this paper, we use deep convolutional neural networks (CNNs) for vessel segmentation. The network is tested on a cerebral angiogram dataset. The results show the effectiveness of deep learning approach resulting in an accuracy of 95%.
Yang Fu and Jiawen Fang contributed equally to this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)
Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108, 407–433 (2012)
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8, 263–269 (1989)
Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10, 1010–1019 (2001)
Can, A., Shen, H., Turner, J.N., Tanenbaum, H.L., Roysam, B.: Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans. Inf. Technol. Biomed. 3, 125–138 (1999)
Quachtran, B., Hamilton, R., Scalzo, F.: Detection of intracranial hypertension using deep learning. In: ICPR, pp. 1–6 (2016)
Stier, N., Vincent, N., Liebeskind, D., Scalzo, F.: Deep learning of tissue fate features in acute ischemic stroke. In: IEEE BIBM, pp. 1316–1321 (2015)
Vincent, N., Stier, N., Yu, S., Liebeskind, D.S., Wang, D.J., Scalzo, F.: Detection of hyperperfusion on arterial spin labeling using deep learning. In: IEEE BIBM, pp. 1322–1327 (2015)
Melinščak, M., Prentašić, P., Lončarić, S.: Retinal vessel segmentation using deep neural networks. In: VISAPP (2015)
Maji, D., Santara, A., Mitra, P., Sheet, D.: Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv preprint arxiv:1603.04833 (2016)
Fu, H., Xu, Y., Wong, D.W.K., Liu, J.: Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: ISBI (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org
Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, pp. 958–963 (2003)
Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE TPAMI 35, 221–231 (2013)
Scalzo, F., Liebeskind, D.S.: Perfusion angiography in acute ischemic stroke. Comput. Math. Methods Med. 2016, 1–14 (2016)
Scalzo, F., Hao, Q., Walczak, A.M., Hu, X., Hoi, Y., Hoffmann, K.R., Liebeskind, D.S.: Computational hemodynamics in intracranial vessels reconstructed from biplane angiograms. In: Bebis, G., et al. (eds.) ISVC 2010. LNCS, vol. 6455, pp. 359–367. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17277-9_37
Acknowledgments
Prof. Scalzo was partially supported by a AHA grant 16BGIA27760152, a Spitzer grant, and received hardware donations from Gigabyte, Nvidia, and Intel.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Fu, Y., Fang, J., Quachtran, B., Chachkhiani, N., Scalzo, F. (2016). Vessel Detection on Cerebral Angiograms Using Convolutional Neural Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_59
Download citation
DOI: https://doi.org/10.1007/978-3-319-50835-1_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50834-4
Online ISBN: 978-3-319-50835-1
eBook Packages: Computer ScienceComputer Science (R0)