Vessel Detection on Cerebral Angiograms Using Convolutional Neural Networks | SpringerLink
Skip to main content

Vessel Detection on Cerebral Angiograms Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

  • 4632 Accesses

Abstract

Blood-vessel segmentation in cerebral angiograms is a valuable tool for medical diagnosis. However, manual blood-vessel segmentation is a time consuming process that requires high levels of expertise. The automatic detection of blood vessels can not only improve efficiency but also allow for the development of automatic diagnosis systems. Vessel detection can be approached as a binary classification problem, identifying each pixel as a vessel or non-vessel. In this paper, we use deep convolutional neural networks (CNNs) for vessel segmentation. The network is tested on a cerebral angiogram dataset. The results show the effectiveness of deep learning approach resulting in an accuracy of 95%.

Yang Fu and Jiawen Fang contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)

    Article  Google Scholar 

  2. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108, 407–433 (2012)

    Article  Google Scholar 

  3. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8, 263–269 (1989)

    Article  Google Scholar 

  4. Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10, 1010–1019 (2001)

    Article  MATH  Google Scholar 

  5. Can, A., Shen, H., Turner, J.N., Tanenbaum, H.L., Roysam, B.: Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans. Inf. Technol. Biomed. 3, 125–138 (1999)

    Article  Google Scholar 

  6. Quachtran, B., Hamilton, R., Scalzo, F.: Detection of intracranial hypertension using deep learning. In: ICPR, pp. 1–6 (2016)

    Google Scholar 

  7. Stier, N., Vincent, N., Liebeskind, D., Scalzo, F.: Deep learning of tissue fate features in acute ischemic stroke. In: IEEE BIBM, pp. 1316–1321 (2015)

    Google Scholar 

  8. Vincent, N., Stier, N., Yu, S., Liebeskind, D.S., Wang, D.J., Scalzo, F.: Detection of hyperperfusion on arterial spin labeling using deep learning. In: IEEE BIBM, pp. 1322–1327 (2015)

    Google Scholar 

  9. Melinščak, M., Prentašić, P., Lončarić, S.: Retinal vessel segmentation using deep neural networks. In: VISAPP (2015)

    Google Scholar 

  10. Maji, D., Santara, A., Mitra, P., Sheet, D.: Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv preprint arxiv:1603.04833 (2016)

  11. Fu, H., Xu, Y., Wong, D.W.K., Liu, J.: Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: ISBI (2016)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  13. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  15. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, pp. 958–963 (2003)

    Google Scholar 

  16. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE TPAMI 35, 221–231 (2013)

    Article  Google Scholar 

  17. Scalzo, F., Liebeskind, D.S.: Perfusion angiography in acute ischemic stroke. Comput. Math. Methods Med. 2016, 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  18. Scalzo, F., Hao, Q., Walczak, A.M., Hu, X., Hoi, Y., Hoffmann, K.R., Liebeskind, D.S.: Computational hemodynamics in intracranial vessels reconstructed from biplane angiograms. In: Bebis, G., et al. (eds.) ISVC 2010. LNCS, vol. 6455, pp. 359–367. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17277-9_37

    Chapter  Google Scholar 

Download references

Acknowledgments

Prof. Scalzo was partially supported by a AHA grant 16BGIA27760152, a Spitzer grant, and received hardware donations from Gigabyte, Nvidia, and Intel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Scalzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Fu, Y., Fang, J., Quachtran, B., Chachkhiani, N., Scalzo, F. (2016). Vessel Detection on Cerebral Angiograms Using Convolutional Neural Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics