Abstract
Google Machine Reassignment Problem (GMRP) is an optimisation problem proposed at ROADEF/EURO challenge 2012. The task of GMRP is to allocate cloud computing resources by reassigning a set of services to a set of machines while not violating any constraints. We propose an evolutionary parallel late acceptance hill-climbing algorithm (P-LAHC) for GMRP in this study. The aim is to improve the efficiency of search by escaping local optima. Our P-LAHC method involves multiple search processes. It utilises a population of solutions instead of a single solution. Each solution corresponds to one LAHC process. These processes work in parallel to improve the overall search outcome. These LAHC processes start with different initial individuals and follow distinct search paths. That reduces the chance of falling into a same local optima. In addition, mutation operators will apply when the search becomes stagnated for a certain period of time. This further reduces the chance of being trapped by a local optima. Our results on GMRP instances show that the proposed P-LAHC performed better than single threaded LAHC. Furthermore P-LAHC can outperform or at least be comparable to the state-of-the-art methods from the literature, indicating that P-LAHC is an effective search algorithm.
Similar content being viewed by others
References
ROADEF/EURO challenge: Machine reassignment (2011). http://challenge.roadef.org/2012/en/
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)
Brandt, F., Speck, J., Völker, M.: Constraint-based large neighborhood search for machine reassignment. Ann. Oper. Res. 242, 1–29 (2012)
Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling problems. In: PATAT 2008 Conference, Montreal, Canada (2008)
Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. University of Stirling. Technical report (2012)
Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)
Crainic, T.G., Toulouse, M.: Parallel meta-heuristics. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of metaheuristics, vol. 146, pp. 497–541. Springer, US (2010). doi:10.1007/978-1-4419-1665-5_17
Domínguez, J., Alba, E.: Dealing with hardware heterogeneity: a new parallel search model. Natural Comput. 12(2), 179–193 (2013)
Fonseca, G.H.G., Santos, H.G., Carrano, E.G.: Late acceptance hill-climbing for high school timetabling. J. Sched. 19, 1–13 (2015)
García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)
Gavranović, H., Buljubašić, M., Demirović, E.: Variable neighborhood search for Google Machine Reassignment Problem. Electron. Notes Discrete Math. 39, 209–216 (2012)
Goerler, A., Schulte, F., Voß, S.: An application of late acceptance hill-climbing to the traveling purchaser problem. In: Pacino, D., Voß, S., Jensen, R.M. (eds.) ICCL 2013. LNCS, vol. 8197, pp. 173–183. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41019-2_13
Lopes, R., Morais, V.W.C., Noronha, T.F., Souza, V.A.A.: Heuristics and matheuristics for a real-life machine reassignment problem. Int. Trans. Oper. Res. 22(1), 77–95 (2015)
Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization for the traveling salesman problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 224–234. Springer, Heidelberg (2006). doi:10.1007/11839088_20
Masson, R., Vidal, T., Michallet, J., Penna, P.H.V., Petrucci, V., Subramanian, A., Dubedout, H.: An iterated local search heuristic for multi-capacity bin packing and machine reassignment problems. Expert Syst. Appl. 40(13), 5266–5275 (2013)
Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 782–797. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_56
Özcan, E., Bykov, Y., Birben, M., Burke, E.K.: Examination timetabling using late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation, 2009. CEC 2009, pp. 997–1004. IEEE (2009)
Ritt, M.R.P.: An algorithmic study of the machine reassignment problem. PhD thesis, Universidade Federal do Rio Grande do Sul (2012)
Sabar, N.R., Song, A.: Grammatical evolution enhancing simulated annealing for the load balancing problem in cloud computing. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp. 997–1003. ACM (2016)
Sabar, N.R., Song, A., Zhang, M.: A variable local search based memetic algorithm for the load balancing problem in cloud computing. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016, Part I. LNCS, vol. 9597, pp. 267–282. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31204-0_18
Turky, A., Abdullah, S., McCollum, B., Sabar, N.R: An evolutionary hill climbing algorithm for dynamic optimization problems. In: The 6th Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2013), 27–30 August 2013
Turky, A., Sabar, N.R., Song, A.: An evolutionary simulating annealing algorithm for Google Machine Reassignment Problem. In: The 20th Asia-Pacific Symposium on Intelligent, Evolutionary Systems. Proceedings in Adaptation, Learning and Optimization. Springer Book Series (2016)
Verstichel, J., Berghe, G.V.: A late acceptance algorithm for the lock scheduling problem. In: Voß, S., Pahl, J., Schwarze, S. (eds.) Logistik Management, pp. 457–478. Physica, Heidelberg (2009). doi:10.1007/978-3-7908-2362-2_23
Wang, Z., Lü, Z., Ye, T.: Multi-neighborhood local search optimization for machine reassignment problem. Comput. Oper. Res. 68, 16–29 (2016)
Yuan, B., Zhang, C., Shao, X.: A late acceptance hill-climbing algorithm for balancing two-sided assembly lines with multiple constraints. J. Intell. Manuf. 26(1), 159–168 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Turky, A., Sabar, N.R., Sattar, A., Song, A. (2016). Parallel Late Acceptance Hill-Climbing Algorithm for the Google Machine Reassignment Problem. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-50127-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50126-0
Online ISBN: 978-3-319-50127-7
eBook Packages: Computer ScienceComputer Science (R0)