Towards Stress Detection in Real-Life Scenarios Using Wearable Sensors: Normalization Factor to Reduce Variability in Stress Physiology | SpringerLink
Skip to main content

Towards Stress Detection in Real-Life Scenarios Using Wearable Sensors: Normalization Factor to Reduce Variability in Stress Physiology

  • Conference paper
  • First Online:
eHealth 360°

Abstract

Wearable physiological sensors offer possibilities for the development of continuous stress detection models. Such models need to address the inter-individual and intra-individual differences in stress physiology. In this paper we propose and evaluate a normalization factor, \(Stress\,Response\,Factor~(SRF)\), to address such differences. SRF is computed using physiological features and the corresponding stress level at a reference point. The proposed normalization factor is evaluated in a dataset obtained from a free-living study with 10 participants, where each participant was monitored for 5 days during their working hours using different physiological sensors. We obtain an average reduction of mean squared error by up to 32% in models with SRF compared to the models without SRF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alamudun, F., Choi, J., Gutierrez-Osuna, R., Khan, H., Ahmed, B.: Removal of subject-dependent and activity-dependent variation in physiological measures of stress. In: Proceedings of the 6th International Conference on Pervasive Computing Technologies for Healthcare (2012)

    Google Scholar 

  2. Altini, M., Penders, J., Amft, O.: Energy expenditure estimation using wearable sensors: a new methodology for activity-specific models. In: Proceedings of the conference on Wireless Health (2012)

    Google Scholar 

  3. Association, A.P.: Stress in America: paying with our health. Technical report, American Psychological Association (2014). http://www.apa.org/news/press/releases/stress/2014/stress-report.pdf

  4. Bennet, J., Lanning, S.: The Netflix prize. In: KDD Cup and Workshop (2007)

    Google Scholar 

  5. Brantley, P.J., Waggoner, C.D., Jones, G.N., Rappaport, N.B.: A daily stress inventory: development, reliability, and validity. J. Behav. Med. 10, 61–73 (1987)

    Article  Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Brown, L., Grundlehner, B., van de Molengraft, J., Penders, J., Gyselinckx, B.: Body area network for monitoring autonomic nervous system responses. In: Pervasive Computing Technologies for Healthcare (2009)

    Google Scholar 

  8. Choi, J., Ricardo, G.O.: Using heart rate monitors to detect mental stress. In: Sixth International Workshop on Wearable and Implantable Body Sensor Networks (2009)

    Google Scholar 

  9. Drucker, H., Bruges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.N.: Support vector regression machines. In: Advances in Neural Information Processing Systems (1996)

    Google Scholar 

  10. Eurofound, E.-O.: Psychological risks in Europe: prevalance and strategies for prevention. Technical report, Publications Office of the European Union, Luxemborg (2014)

    Google Scholar 

  11. Giakoumis, D., Tzovaras, D., Hassapis, G.: Subject-dependent biosignal features for increased accuracy in psychological stress detection. Int. J. Hum Comput Stud. 71, 425–439 (2013)

    Article  Google Scholar 

  12. Healey, J., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6, 156–166 (2005)

    Article  Google Scholar 

  13. Hjortskov, N., Rissen, D., Blangsted, A.K., Fallentin, N., Lundberg, U., Søgaard, K.: The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 92, 84–89 (2004)

    Article  Google Scholar 

  14. Jiapu, P., Tompkins, J.W.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32, 230–236 (1985)

    Google Scholar 

  15. Keytel, L., Goedecke, J., Noakes, T., Hiloskorpi, H., Laukkanen, R., van der Merwe, L., Lambert, E.: Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J. Sports Sci. 23, 289–297 (2005)

    Article  Google Scholar 

  16. Nadeau, D., Sabourin, C., Koninck, J.D., Matwin, S., Turney, P.D.: Automatic dream sentiment analysis. In: Proceedings of the Workshop on Computational Aesthetics at the 21st National Conference on Artificial Intelligence (AAAI) (2006)

    Google Scholar 

  17. Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1175–1191 (2001)

    Article  Google Scholar 

  18. Sano, A., Picard, R.W.: Stress recognition using wearable sensors and mobile phones. In: Humaine Association Conference on Affective Computing and Intelligent Interaction (2013)

    Google Scholar 

  19. Shi, Y., Ngyuen, M., Blitz, P., French, B., Frisk, S., Torre, F., Smailagic, A., Siewiorek, D., al’Absi, M., Kamarck, T., Kumar, S.: Personalized stress detection from physiological measurements. In: Proceedings of the 2nd International Symposium on Quality of Life Technology (2010)

    Google Scholar 

  20. Sun, F.-T., Kuo, C., Cheng, H.-T., Buthpitiya, S., Collins, P., Griss, M.: Activity-aware mental stress detection using physiological sensors. In: Gris, M., Yang, G. (eds.) MobiCASE 2010. LNICST, vol. 76, pp. 211–230. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29336-8_12

    Chapter  Google Scholar 

  21. Tanev, G., Saadi, D., Hoppe, K., Sorensen, H.: Classification of acute stress using linear and non-linear heart rate variability analysis derived from sternal ECG. In: 36th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) (2014)

    Google Scholar 

  22. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Tulppo, M., Makikallio, T., Takala, T., Seppanen, T., Huikuri, H.V.: Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. Cell Physiol. 271, H244–H252 (1996)

    Google Scholar 

  24. Wijsman, J., Grundlehner, B., Penders, J., Hermens, H.: Trapezius muscle EMG as predictor of mental stress. ACM Trans. Embed. Comput. Syst. 12, 99:1–99:20 (2013)

    Article  Google Scholar 

  25. Wijsman, J.: Sensing stress: stress detection from physiological variables in controlled and uncontrolled conditions. Ph.D. thesis, University of Twente (2014)

    Google Scholar 

  26. Wu, M., Cao, H., Nguyen, H.L., Surmacz, K., Hargrove, C.: Modeling perceived stress via HRV and accelerometer sensor streams. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2015)

    Google Scholar 

  27. Xu, Q., Nwe, T.L., Guan, C.: Cluster-based analysis for personalized stress evaluation using physiological signals. IEEE J. Biomed. Health Inform. 19, 275–281 (2014)

    Article  Google Scholar 

  28. Zhai, J., Barreto, A.: Stress detection in computer users through non-invasive monitoring of physiological signals. Biomed. Sci. Instrum. 42, 495–500 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishal Lamichhane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Lamichhane, B., Großekathöfer, U., Schiavone, G., Casale, P. (2017). Towards Stress Detection in Real-Life Scenarios Using Wearable Sensors: Normalization Factor to Reduce Variability in Stress Physiology. In: Giokas, K., Bokor, L., Hopfgartner, F. (eds) eHealth 360°. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-319-49655-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49655-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49654-2

  • Online ISBN: 978-3-319-49655-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics