Theoretical Analysis of the k-Means Algorithm – A Survey | SpringerLink
Skip to main content

Theoretical Analysis of the k-Means Algorithm – A Survey

  • Chapter
  • First Online:
Algorithm Engineering

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9220))

Abstract

The k-means algorithm is one of the most widely used clustering heuristics. Despite its simplicity, analyzing its running time and quality of approximation is surprisingly difficult and can lead to deep insights that can be used to improve the algorithm. In this paper we survey the recent results in this direction as well as several extension of the basic k-means method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Notice that though we present these results after [14] and [7] for reasons of presentation, the work of Ostrovsky et al. [67] appeared first.

  2. 2.

    The computation of the SVD is a well-studied field of research. For an in-depth introduction to spectral algorithms and singular value decompositions, see [52].

  3. 3.

    http://infolab.stanford.edu/~loc/.

  4. 4.

    As briefly discussed in Sect. 3.1, it is sufficient to sample \(\mathcal {O}(k)\) centers to obtain a constant factor approximation as later discovered by Aggarwal et al. [7].

  5. 5.

    http://www.cs.uni-paderborn.de/fachgebiete/ag-bloemer/forschung/abgeschlossene/clustering-dfg-schwerpunktprogramm-1307/streamkmpp.html.

  6. 6.

    This holds with constant probability and for any constant \(\varepsilon \).

  7. 7.

    http://pages.cs.wisc.edu/vganti/birchcode/.

  8. 8.

    http://ls2-www.cs.uni-dortmund.de/bico.

  9. 9.

    Note that Kanungo et al. use a better candidate set and thus give a \((25+\varepsilon )\)-approximation.

References

  1. Achlioptas, D., McSherry, F.: On spectral learning of mixtures of distributions. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 458–469. Springer, Heidelberg (2005). doi:10.1007/11503415_31

    Chapter  Google Scholar 

  2. Ackermann, M.R., Blömer, J.: Coresets and approximate clustering for Bregman divergences. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 1088–1097. Society for Industrial and Applied Mathematics (SIAM) (2009). http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/CoresetsAndApproximateClusteringForBregmanDivergences.pdf

  3. Ackermann, M.R., Blömer, J.: Bregman clustering for separable instances. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 212–223. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13731-0_21

    Chapter  Google Scholar 

  4. Ackermann, M.R., Blömer, J., Scholz, C.: Hardness and non-approximability of Bregman clustering problems. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 18, no. 15, pp. 1–20 (2011). http://eccc.uni-trier.de/report/2011/015/, report no. TR11-015

  5. Ackermann, M.R., Blömer, J., Sohler, C.: Clustering for metric and non-metric distance measures. ACM Trans. Algorithms 6(4), Article No. 59:1–26 (2010). Special issue on SODA 2008

    Google Scholar 

  6. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.: Streamkm++: a clustering algorithm for data streams. ACM J. Exp. Algorithmics 17, Article No. 4, 1–30 (2012)

    Google Scholar 

  7. Aggarwal, A., Deshpande, A., Kannan, R.: Adaptive sampling for k-means clustering. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM -2009. LNCS, vol. 5687, pp. 15–28. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03685-9_2

    Chapter  Google Scholar 

  8. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In: Proceedings of the 22nd Annual Conference on Neural Information Processing Systems, pp. 10–18 (2009)

    Google Scholar 

  9. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

    Article  Google Scholar 

  10. Alsabti, K., Ranka, S., Singh, V.: An efficient \(k\)-means clustering algorithm. In: Proceeding of the First Workshop on High-Performance Data Mining (1998)

    Google Scholar 

  11. Arora, S., Kannan, R.: Learning mixtures of separated nonspherical Gaussians. Ann. Appl. Probab. 15(1A), 69–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arthur, D., Manthey, B., Röglin, H.: \(k\)-means has polynomial smoothed complexity. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pp. 405–414. IEEE Computer Society (2009)

    Google Scholar 

  13. Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In: Proceedings of the 22nd ACM Symposium on Computational Geometry (SoCG 2006), pp. 144–153 (2006)

    Google Scholar 

  14. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  15. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the \(k\)-means method. SIAM J. Comput. 39(2), 766–782 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Awasthi, P., Blum, A., Sheffet, O.: Stability yields a PTAS for k-median and k-means clustering. In: FOCS, pp. 309–318 (2010)

    Google Scholar 

  17. Awasthi, P., Charikar, M., Krishnaswamy, R., Sinop, A.K.: The hardness of approximation of Euclidean k-means. In: SoCG 2015 (2015, accepted)

    Google Scholar 

  18. Balcan, M.F., Blum, A., Gupta, A.: Approximate clustering without the approximation. In: SODA, pp. 1068–1077 (2009)

    Google Scholar 

  19. Banerjee, A., Guo, X., Wang, H.: On the optimality of conditional expectation as a Bregman predictor. IEEE Trans. Inf. Theory 51(7), 2664–2669 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Belkin, M., Sinha, K.: Toward learning Gaussian mixtures with arbitrary separation. In: COLT, pp. 407–419 (2010)

    Google Scholar 

  22. Belkin, M., Sinha, K.: Learning Gaussian mixtures with arbitrary separation. CoRR abs/0907.1054 (2009)

    Google Scholar 

  23. Belkin, M., Sinha, K.: Polynomial learning of distribution families. In: FOCS, pp. 103–112 (2010)

    Google Scholar 

  24. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Braverman, V., Meyerson, A., Ostrovsky, R., Roytman, A., Shindler, M., Tagiku, B.: Streaming k-means on well-clusterable data. In: SODA, pp. 26–40 (2011)

    Google Scholar 

  26. Brubaker, S.C., Vempala, S.: Isotropic PCA and affine-invariant clustering. In: FOCS, pp. 551–560 (2008)

    Google Scholar 

  27. Chaudhuri, K., McGregor, A.: Finding metric structure in information theoretic clustering. In: COLT, pp. 391–402. Citeseer (2008)

    Google Scholar 

  28. Chaudhuri, K., Rao, S.: Learning mixtures of product distributions using correlations and independence. In: COLT, pp. 9–20 (2008)

    Google Scholar 

  29. Chen, K.: On coresets for k-median and k-means clustering in metric and Euclidean spaces and their applications. SIAM J. Comput. 39(3), 923–947 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dasgupta, S.: Learning mixtures of Gaussians. In: FOCS, pp. 634–644 (1999)

    Google Scholar 

  31. Dasgupta, S.: How fast Is k-means? In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, p. 735. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45167-9_56

    Chapter  Google Scholar 

  32. Dasgupta, S.: The hardness of \(k\)-means clustering. Technical report CS2008-0916, University of California (2008)

    Google Scholar 

  33. Dasgupta, S., Schulman, L.J.: A probabilistic analysis of EM for mixtures of separated, spherical Gaussians. J. Mach. Learn. Res. 8, 203–226 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: Proceedings of the 43th Annual ACM Symposium on Theory of Computing (STOC), pp. 569–578 (2011)

    Google Scholar 

  35. Feldman, D., Monemizadeh, M., Sohler, C.: A PTAS for \(k\)-means clustering based on weak coresets. In: Proceedings of the 23rd ACM Symposium on Computational Geometry (SoCG), pp. 11–18 (2007)

    Google Scholar 

  36. Feldman, J., O’Donnell, R., Servedio, R.A.: Learning mixtures of product distributions over discrete domains. SIAM J. Comput. 37(5), 1536–1564 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fichtenberger, H., Gillé, M., Schmidt, M., Schwiegelshohn, C., Sohler, C.: BICO: BIRCH meets coresets for k-means clustering. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 481–492. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40450-4_41

    Chapter  Google Scholar 

  38. Frahling, G., Sohler, C.: Coresets in dynamic geometric data streams. In: Proceedings of the 37th STOC, pp. 209–217 (2005)

    Google Scholar 

  39. Gordon, A.: Null models in cluster validation. In: Gaul, W., Pfeifer, D. (eds.) From Data to Knowledge: Theoretical and Practical Aspects of Classification, Data Analysis, and Knowledge Organization, pp. 32–44. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  40. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams: theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528 (2003)

    Article  Google Scholar 

  41. Hamerly, G., Drake, J.: Accelerating Lloyd’s algorithm for k-means clustering. In: Celebi, M.E. (ed.) Partitional Clustering Algorithms, pp. 41–78. Springer, Cham (2015)

    Google Scholar 

  42. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering. Discrete Comput. Geom. 37(1), 3–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC 2004), pp. 291–300 (2004)

    Google Scholar 

  44. Har-Peled, S., Sadri, B.: How fast is the k-means method? In: SODA, pp. 877–885 (2005)

    Google Scholar 

  45. Hartigan, J.A.: Clustering Algorithms. Wiley, Hoboken (1975)

    MATH  Google Scholar 

  46. Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering (extended abstract). In: Symposium on Computational Geometry (SoCG 1994), pp. 332–339 (1994)

    Google Scholar 

  47. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  48. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  49. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48(2), 274–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Judd, D., McKinley, P.K., Jain, A.K.: Large-scale parallel data clustering. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 871–876 (1998)

    Article  Google Scholar 

  51. Kalai, A.T., Moitra, A., Valiant, G.: Efficiently learning mixtures of two Gaussians. In: STOC, pp. 553–562 (2010)

    Google Scholar 

  52. Kannan, R., Vempala, S.: Spectral algorithms. Found. Trends Theoret. Comput. Sci. 4(3–4), 157–288 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Kannan, R., Salmasian, H., Vempala, S.: The spectral method for general mixture models. SIAM J. Comput. 38(3), 1141–1156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  MATH  Google Scholar 

  55. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for \(k\)-means clustering. Comput. Geom. 28(2–3), 89–112 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kumar, A., Kannan, R.: Clustering with spectral norm and the \(k\)-means algorithm. In: Proceedings of the 51st Annual Symposium on Foundations of Computer Science (FOCS 2010), pp. 299–308. IEEE Computer Society (2010)

    Google Scholar 

  57. Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clustering problems in any dimensions. J. ACM 57(2), Article No. 5 (2010)

    Google Scholar 

  58. Lloyd, S.P.: Least squares quantization in PCM. Bell Laboratories Technical Memorandum (1957)

    Google Scholar 

  59. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

    Google Scholar 

  60. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is NP-hard. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 274–285. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00202-1_24

    Chapter  Google Scholar 

  61. Manthey, B., Röglin, H.: Worst-case and smoothed analysis of k-means clustering with Bregman divergences. JoCG 4(1), 94–132 (2013)

    MathSciNet  MATH  Google Scholar 

  62. Manthey, B., Rölin, H.: Improved smoothed analysis of the k-means method. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 461–470. Society for Industrial and Applied Mathematics (2009)

    Google Scholar 

  63. Matoušek, J.: On approximate geometric k-clustering. Discrete Comput. Geom. 24(1), 61–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  64. Matula, D.W., Shahrokhi, F.: Sparsest cuts and bottlenecks in graphs. Discrete Appl. Math. 27, 113–123 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  65. Moitra, A., Valiant, G.: Settling the polynomial learnability of mixtures of Gaussians. In: FOCS 2010 (2010)

    Google Scholar 

  66. Nock, R., Luosto, P., Kivinen, J.: Mixed Bregman clustering with approximation guarantees. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 154–169. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87481-2_11

    Chapter  Google Scholar 

  67. Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of Lloyd-type methods for the k-means problem. In: FOCS, pp. 165–176 (2006)

    Google Scholar 

  68. Pelleg, D., Moore, A.W.: Accelerating exact k-means algorithms with geometric reasoning. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 277–281 (1999)

    Google Scholar 

  69. Selim, S.Z., Ismail, M.A.: \(k\)-means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 6(1), 81–87 (1984)

    Article  MATH  Google Scholar 

  70. Steinhaus, H.: Sur la division des corps matériels en parties. Bulletin de l’Académie Polonaise des Sciences IV(12), 801–804 (1956)

    MathSciNet  MATH  Google Scholar 

  71. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a dataset via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63, 411–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  72. Vattani, A.: \(k\)-means requires exponentially many iterations even in the plane. In: Proceedings of the 25th ACM Symposium on Computational Geometry (SoCG 2009), pp. 324–332. Association for Computing Machinery (2009)

    Google Scholar 

  73. de la Vega, W.F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes for clustering problems. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC 2003), pp. 50–58 (2003)

    Google Scholar 

  74. Vempala, S., Wang, G.: A spectral algorithm for learning mixture models. J. Comput. Syst. Sci. 68(4), 841–860 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  75. Venkatasubramanian, S.: Choosing the number of clusters I-III (2010). http://blog.geomblog.org/p/conceptual-view-of-clustering.html. Accessed 30 Mar 2015

  76. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: a new data clustering algorithm and its applications. Data Min. Knowl. Disc. 1(2), 141–182 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Blömer, J., Lammersen, C., Schmidt, M., Sohler, C. (2016). Theoretical Analysis of the k-Means Algorithm – A Survey. In: Kliemann, L., Sanders, P. (eds) Algorithm Engineering. Lecture Notes in Computer Science(), vol 9220. Springer, Cham. https://doi.org/10.1007/978-3-319-49487-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49487-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49486-9

  • Online ISBN: 978-3-319-49487-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics