Findings About Selecting Body Parts to Analyze Human Activities Through Skeletal Tracking Joint Oriented Devices | SpringerLink
Skip to main content

Findings About Selecting Body Parts to Analyze Human Activities Through Skeletal Tracking Joint Oriented Devices

  • Conference paper
  • First Online:
Ubiquitous Computing and Ambient Intelligence (UCAmI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10069))

  • 1506 Accesses

Abstract

Analyzing activities (either static postures or movements) made by a user is a complex process that can be done through a wide range of approaches. One part of these existing approaches support doing the recognition focusing their analysis on specific body parts. In fact, in previous publications a method was introduced for activity recognition (Body-Angles Algorithm) capable of analysing only using a single sample of those activitites and allowing the selection for each activity which are the relevant joints. But being able to analyse the body of the user selecting only a subset of the same, has both advantages and disadvantages. Therefore throughout this article we will expose those disadvantages, the applied solution to mitigate them and the results of an evaluation destined to clear which body parts make it easier to obtain high accuracy rates in recognition. Through this work we aim to give the scientific community lessons learned about the usage of different body areas in the analysis of activity recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The activities identified with [D] are done with the right side of the body. These are the asymmetric activities, those that can be performed with either the left [I] or right side of the body, and therefore two versions must be recorded in the system, one for each half of the body.

References

  1. Alexiadis, D.S., Kelly, P., Daras, P., O’Connor, N.E., Boubekeur, T., Moussa, M.B.: Evaluating a dancer’s performance using kinect-based skeleton tracking. In: Proceedings of the 19th ACM International Conference on Multimedia, Scottsdale, Arizona, USA, pp. 659–662. ACM (2011)

    Google Scholar 

  2. Banos, O., Toth, M.A., Damas, M., Pomares, H., Rojas, I.: Dealing with the effects of sensor displacement in wearable activity recognition. Sensors 14(6), 9995–10023 (2014)

    Article  Google Scholar 

  3. Bansal, S., Khandelwal, S., Gupta, S., Goyal, D.: Kitchen activity recognition based on scene context. In: International Conference on Image Processing (ICIP), Melbourne, Australia, pp. 3461–3465. IEEE (2013)

    Google Scholar 

  4. Biswas, K.K., Basu, S.K.: Gesture recognition using microsoft kinect®. In: Automation, Robotics and Applications (ICARA) 5th International Conference, Wellington, New Zealand, pp. 100–103. IEEE (2011)

    Google Scholar 

  5. Boger, J., Hoey, J., Poupart, P., Boutilier, C., Fernie, G., Mihailidis, A.: A planning system based on Markov decision processes to guide people with dementia through activities of daily living. IEEE Trans. Inf Technol. Biomed. 10(2), 323–333 (2006)

    Article  Google Scholar 

  6. Brush, A., Krumm, J., Scott, J.: Activity recognition research: the good, the bad, and the future. In: Pervasive Workshop How to do Good Research in Activity Recognition. Helsinki, Finland (2010)

    Google Scholar 

  7. Cleland, I., Kikhia, B., Nugent, C., Boytsov, A., Hallberg, J., Synnes, K., Finlay, D.: Optimal placement of accelerometers for the detection of everyday activities. Sensors 13(7), 9183–9200 (2013)

    Article  Google Scholar 

  8. Fathi, A., Farhadi, A., Rehg, J.M.: Understanding egocentric activities. In: International Conference on Computer Vision (ICCV), Barcelona, Spain, pp. 407–414. IEEE (2011)

    Google Scholar 

  9. Fontecha, J., Navarro, F.J., Hervás, R., Bravo, J.: Elderly frailty detection by using accelerometer-enabled smartphones and clinical information records. Pers. ubiquitous Comput. 17(6), 1073–1083 (2013)

    Article  Google Scholar 

  10. Fu, J., Liu, C., Hsu, Y.P., Fu, L.C.: Recognizing context-aware activities of daily living using RGBD sensor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, pp. 2222–2227. IEEE (2013)

    Google Scholar 

  11. Goncalves, N., Costa, S., Rodrigues, J., Soares, F.: Detection of stereotyped hand flapping movements in Autistic children using the Kinect sensor: A case study. In: Autonomous Robot Systems and Competitions (ICARSC), Espinho, Portugal, pp. 212–216. IEEE (2014)

    Google Scholar 

  12. Gutiérrez López de la Franca, C., Hervás, R., Bravo, J.: Activity recognition in intelligent assistive environments through video analysis with body-angles algorithm. In: García-Chamizo, J.M., et al. (eds.) UCAmI 2015. LNCS, vol. 9454, pp. 162–173. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26401-1_16

    Chapter  Google Scholar 

  13. Gutiérrez López de la Franca, C., Hervás, R.: Reconocimiento de Actividades de Propósito General mediante Kinect y el Algoritmo de Ángulos Corporales. Internal Report, University of Castilla-La Mancha (2016)

    Google Scholar 

  14. Johnson, E., Hervás, R., Gutiérrez López de la Franca, C., Mondéjar, T., Ochoa, S.F., Favela, J.: Assessing empathy and managing emotions through interactions with an affective avatar. Health Inf. J., 1–12 (2016). doi:10.1177/1460458216661864

    Google Scholar 

  15. Kunze, K., Lukowicz, P., Junker, H., Tröster, G.: Where am I: recognizing on-body positions of wearable sensors. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 264–275. Springer, Heidelberg (2005). doi:10.1007/11426646_25

    Chapter  Google Scholar 

  16. Kunze, K., Lukowicz, P.: Sensor placement variations in wearable activity recognition. IEEE Pervasive Comput. 13(4), 32–41 (2014)

    Article  Google Scholar 

  17. Kusumam, K.: Relational learning using body parts for human activity recognition videos. Technical report, University of Lincoln (2012)

    Google Scholar 

  18. Ladha, C., Hammerla, N., Hughes, E., Olivier, P., Plötz, T.: Dog’s life: wearable activity recognition for dogs. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, pp. 415–418. ACM (2013)

    Google Scholar 

  19. Leightley, D., Darby, J., Li, B., McPhee, J.S., Yap, M.H.: Human activity recognition for physical rehabilitation. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Manchester, United Kingdom, pp. 261–266. IEEE (2013)

    Google Scholar 

  20. Mondéjar, T., Hervás, R., Johnson, E., Gutiérrez, C., Latorre, J.M.: Correlation between videogame mechanics and executive functions through EEG analysis. J. Biomed. Inform. 63, 131–140 (2016)

    Article  Google Scholar 

  21. Polana, R., Nelson, R.: Low level recognition of human motion (or how to get your man without finding his body parts). In: Proceedings of the 1994 IEEE Workshop on Motion of Non-Rigid and Articulated Objects, Austin, Texas, USA, pp. 77–82. IEEE (1994)

    Google Scholar 

  22. Ramirez-Giraldo, D., Molina-Giraldo, S., Alvarez-Meza, A.M., Daza-Santacoloma, G., Castellanos-Dominguez, G.: Kernel based hand gesture recognition using kinect sensor. In: XVII Symposium on Image, Signal Processing, and Artificial Vision (STSIVA), Antioquia, Turkey, pp. 158–161. IEEE (2012)

    Google Scholar 

  23. Raso, I., Hervás, R., Bravo, J.: m-Physio: personalized accelerometer-based physical rehabilitation platform. In: Proceedings of the Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Florence, Italy, pp. 416–421 (2010)

    Google Scholar 

  24. Ryoo, M.S., Matthies, L.: First-person activity recognition: what are they doing to me?. In: Computer Vision and Pattern Recognition (CVPR), Portland, USA, pp. 2730–2737. IEEE (2013)

    Google Scholar 

  25. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24646-6_10

    Chapter  Google Scholar 

  26. Veltmaat, M.J.T., van Otterlo, M., Vogt, J.: Recognizing activities with the Kinect. Technical report, Radboud University Nijmagen (2013)

    Google Scholar 

  27. Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition methods. J. Frontiers Robot. AI 2, 28 (2015)

    Google Scholar 

  28. Yang, Z., Zicheng, L., Hong, C.: RGB-Depth feature for 3D human activity recognition. Communications, China 10(7), 93–103 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted in the context of UBIHEALTH project under International Research Staff Exchange Schema (MC-IRSES 316337) and the coordinated project grant TIN2013-47152-C3-1-R (FRASE), funded by the Spanish Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gutiérrez López de la Franca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Gutiérrez López de la Franca, C., Hervás, R., Johnson, E., Bravo, J. (2016). Findings About Selecting Body Parts to Analyze Human Activities Through Skeletal Tracking Joint Oriented Devices. In: García, C., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2016. Lecture Notes in Computer Science(), vol 10069. Springer, Cham. https://doi.org/10.1007/978-3-319-48746-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48746-5_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48745-8

  • Online ISBN: 978-3-319-48746-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics