Abstract
Diversity in users’ information needs has been effectively dealt with through personalized Web search systems whereby a user’s interests and preferences are taken into account within the retrieval model. A significant component of any Web search personalization model is the means with which to model a user’s interests and preferences to build what is termed as a user profile. This work explores the use of the Twitter microblog network as a source of user profile construction for Web search personalization. We propose a statistical language modeling approach taking into account various aspects of a user’s behavior on the Twitter network (such as Twitterers followed, mentioned and retweeted). The model also incorporates network and topical similarity measures which enables the model to be a better representation of the user’s profile. The richness of the Web search personalization model leads to significant performance improvements in retrieval accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A query such as “Python” may refer to the programming language or the snake (Example from [17]).
- 2.
- 3.
Earlier work used a network similarity threshold based on which Twitterers not similar to the target user were excluded from the model [26].
- 4.
Note that previous work compared our approach against a non-personalized baseline.
- 5.
From this point onwards in the paper we use the phrase “target user” to refer to the user performing the search and for whom we want to personalize search results.
- 6.
This is more suited to the task at hand as tweets are short and in general related to a single topic.
- 7.
It is often the case that random acquaintances are also followed on Twitter.
- 8.
Note that we treat the tweets’ data as equivalent to history and user documents’ data; furthermore, the technique by Matthijs and Radlinski utilized various segments of a web page (such as title, web page metadata which we could not utilize and hence, we use all terms in tweets except for stopwords).
References
Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Semantic enrichment of twitter posts for user profile construction on the social web. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 375–389. Springer, Heidelberg (2011)
Bouadjenek, M.R., Hacid, H., Bouzeghoub, M., Laicos: An open source platform for personalized social web search. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 1446–1449. ACM, New York (2013)
Bouadjenek, M.R., Hacid, H., Bouzeghoub, M., Vakali, A.: Using social annotations to enhance document representation for personalized search. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2013, pp. 1049–1052. ACM, New York (2013)
Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: conversational aspects of retweeting on twitter. In: 43rd Hawaii International Conference on System Sciences (HICSS), pp. 1–10. IEEE (2010)
Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’el, N., Ronen, I., Uziel, E., Yogev, S., Chernov S.: Personalized social search based on the user’s social network. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 1227–1236. ACM, New York (2009)
Daoud, M., Tamine-Lechani, L., Boughanem, M., Chebaro, B.: A session based personalized search using an ontological user profile. In: SAC 2009, pp. 1732–1736 (2009)
Dou, Z., Song, R., Wen, J.-R.: A large-scale evaluation and analysis of personalized search strategies. In: WWW 2007, pp. 581–590 (2007)
Harpale, A., Yang, Y., Gopal, S., He, D., Yue, Z.: Citedata: a new multi-faceted dataset for evaluating personalized search performance. In: CIKM 2010, pp. 549–558 (2010)
Heymann, P., Koutrika, G., Garcia-Molina, H.: Can social bookmarking improve web search? In: WSDM 2008, pp. 195–206 (2008)
Kacem, A., Boughanem, M., Faiz, R.: Time-sensitive user profile for optimizing search personlization. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 111–121. Springer, Heidelberg (2014)
Lu, X., Li, P., Ma, H., Wang, S., Xu, A., Wang, B.: Computing and applying topic-level user interactions in microblog recommendation. In: Proceedings of the 37th International ACM SIGIR Conference on Research & #38; Development in Information Retrieval, SIGIR 2014, pp. 843–846. ACM, New York (2014)
Matthijs, N., Radlinski, F.: Personalizing web search using long term browsing history. In: WSDM 2011, pp. 25–34 (2011)
Meij, E., Weerkamp, W., de Rijke, M.: Adding semantics to microblog posts. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM 2012, pp. 563–572. ACM, New York (2012)
Noll, M.G., Meinel, C.: Web search personalization via social bookmarking and tagging. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 367–380. Springer, Heidelberg (2007)
Sontag, D., Collins-Thompson, K., Bennett, P.N., White, R.W., Dumais, S., Billerbeck,. B.: Probabilistic models for personalizing web search. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 433–442. ACM (2012)
Sriram, S., Shen, X., Zhai, C.: A session-based search engine. In: SIGIR 2004, pp. 492–493. ACM (2004)
Tan, B., Shen, X., Zhai, C.: Mining long-term search history to improve search accuracy. In: KDD 2006, pp. 718–723 (2006)
Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of interests and activities. In: SIGIR 2005, pp. 449–456 (2005)
Teevan, J., Dumais, S.T., Horvitz, E.: Potential for personalization. ACM Trans. Comput.-Hum. Interact. 17(1), 4:1–4:31 (2010)
Vallet, D., Cantador, I., Jose, J.M.: Personalizing web search with folksonomy-based user and document profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010)
Viejo, A., SáNchez, D., Castellí-Roca, J.: Preventing automatic user profiling in web 2.0 applications. Knowl. Based Syst. 36, 191–205 (2012)
Wang, Q., Jin, H.: Exploring online social activities for adaptive search personalization, CIKM 2010, pp. 999–1008 (2010)
White, R.W., Chu, W., Hassan, A., He, X., Song, Y., Wang, H.: Enhancing personalized search by mining and modeling task behavior. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1411–1420. International World Wide Web Conferences Steering Committee (2013)
White, R.W., Chu, W., Hassan, A., He, X., Song, Y., Wang, H.: Enhancing personalized search by mining and modeling task behavior. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1411–1420. International World Wide Web Conferences Steering Committee (2013)
Younus, A., O’Riordan, C., Pasi, G.: Predictors of users’ willingness to personalize web search. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS, vol. 8132, pp. 459–470. Springer, Heidelberg (2013)
Younus, A., O’Riordan, C., Pasi, G.: A language modeling approach to personalized search based on users’ microblog behavior. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 727–732. Springer, Heidelberg (2014)
Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Younus, A. (2016). Use of Microblog Behavior Data in a Language Modeling Framework to Enhance Web Search Personalization. In: Ma, S., et al. Information Retrieval Technology. AIRS 2016. Lecture Notes in Computer Science(), vol 9994. Springer, Cham. https://doi.org/10.1007/978-3-319-48051-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-48051-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48050-3
Online ISBN: 978-3-319-48051-0
eBook Packages: Computer ScienceComputer Science (R0)