Cluster Forests Based Fuzzy C-Means for Data Clustering | SpringerLink
Skip to main content

Cluster Forests Based Fuzzy C-Means for Data Clustering

  • Conference paper
  • First Online:
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (SOCO 2016, CISIS 2016, ICEUTE 2016)

Abstract

Cluster forests is a novel approach for ensemble clustering based on the aggregation of partial K-means clustering trees. Cluster forests was inspired from random forests algorithm. Cluster forests gives better results than other popular clustering algorithms on most standard benchmarks. In this paper, we propose an improved version of cluster forests using fuzzy C-means clustering. Results shows that the proposed Fuzzy Cluster Forests system gives better clustering results than cluster forests for eight standard clustering benchmarks from UC Irvine Machine Learning Repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Jain, Anil K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  3. Kalti, K., Mahjoub, M.A.: Image segmentation by gaussian mixture models and modified FCM algorithm. Int. Arab J. Inf. Technol. 11(1), 11–18 (2014)

    Google Scholar 

  4. Donghui, Y., Chen, A., Jordan, M.I.: Cluster forests. Comput. Stat. Data Anal. 66, 178–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Leo, B.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Andrew, N., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2, 849–856 (2002)

    Google Scholar 

  7. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–352 (1965)

    Article  MATH  Google Scholar 

  8. Ruspini, E.R.: Numerical methods for fuzzy clustering. Inf. Sci. 2, 319–350 (1970)

    Article  MATH  Google Scholar 

  9. Begum, S.A., Devi, M.O.: A rough type-2 fuzzy clustering algorithm for MR image segmentation. Int. J. Comput. Appl. 54(4), 4–11 (2012)

    Google Scholar 

  10. Lichman, M.: UCI machine learning repository (2016). http://archive.ics.uci.edu/ml

  11. Jan, J., Gajdoš, P., Radecký, M., Snášel, V.: Application of bio-inspired methods within cluster forest algorithm. In: Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA (2015)

    Google Scholar 

  12. Ayed, A.B., Halima, M.B., A1imi, A.M.: Survey on clustering methods: towards fuzzy clustering for big data. In: 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 331–336, Tunis, Tunisia (2014)

    Google Scholar 

  13. Ayed, A.B., Halima, M.B., A1imi, A.M.: MapReduce based text detection in big data natural scene videos. In: INNS Conference Big Data 2015, BigData’2015, San Francisco, USA, 08–10 August 2015

    Google Scholar 

  14. Ayed, A.B., Halima, M.B., A1imi, A.M.: Big data analytics for logistics and transportation. In: Fourth IEEE International Conference on Advanced Logistics and Transport, IEEE ICALT’2015, Valenciennes, France, pp. 311–316, 20–22 May (2015)

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support of this work by grants from General Direction of Scientific Research (DGRST), Tunisia, under the ARUB program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkarim Ben Ayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ben Ayed, A., Ben Halima, M., Alimi, A.M. (2017). Cluster Forests Based Fuzzy C-Means for Data Clustering. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47364-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47363-5

  • Online ISBN: 978-3-319-47364-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics