Towards a Secure Two-Stage Supply Chain Network: A Transportation-Cost Approach | SpringerLink
Skip to main content

Towards a Secure Two-Stage Supply Chain Network: A Transportation-Cost Approach

  • Conference paper
  • First Online:
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (SOCO 2016, CISIS 2016, ICEUTE 2016)

Abstract

The robustness, resilience and security of supply chain transportation is an active research topic, as it directly determines the overall supply chain resilience and security. In this paper, we propose a theoretical model for the transportation problem within a two-stage supply chain network with security constraints called the Secure Supply Chain Network (SSCN). The SSCN contains a manufacturer, directly connected to several distribution centres DC, which are directly connected to one or more customers C. Each direct link between any two elements of Secure Supply Chain Network is allocated a transportation cost. Within the proposed model, the manufacturer produces a single product type; each distribution centre has a fixed capacity and a security rank. The overall objective of the Secure Supply Chain Network is 100 % customer satisfaction whilst fully satisfying the security constraints and minimizing the overall transportation costs. A heuristic solving technique is proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Adlakha, V., Kowalski, K.: On the fixed-charge transportation problem. OMEGA Int. J. Manag. Sci. 27, 381–388 (1999)

    Article  Google Scholar 

  2. Arya, S., et al.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calinescu, A., et al.: Applying and assessing two methods for measuring complexity in manufacturing. J. Oper. Res. Soc. 49(7), 723–733 (1998)

    Article  MATH  Google Scholar 

  4. Chira, C., Dumitrescu, D., Pintea, C.-M.: Learning sensitive stigmergic agents for solving complex problems. Comput. Inf. 29(3), 337–356 (2010)

    MATH  Google Scholar 

  5. Diaby, M.: Successive linear approximation procedure for generalized fixed charge transportation problems. J. Oper. Res. Soc. 42, 991–1001 (1991)

    Article  MATH  Google Scholar 

  6. Deaconu, A., Ciurea, E.: A study on the feasibility of the inverse supply and demand problem. In: Proceedings 15th International Conference on Computers, pp. 485–490 (2011)

    Google Scholar 

  7. Fanea, A., Motogna, S., Diosan, L.: Automata-based component composition analysis. Studia Universitas Babes-Bolyai, Informatica 50(1), 13–20 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Pintea, C.-M., Crisan, G.-C., Chira, C.: Hybrid ant models with a transition policy for solving a complex problem. Logic J. IGPL 20(3), 560–569 (2012)

    Article  MathSciNet  Google Scholar 

  9. Molla-Alizadeh-Zavardehi, S., et al.: Solving a capacitated fixed-charge transportation problem by artificial immune and genetic algorithms with a Prufer number representation. Expert Sys. Appl. 38, 10462–10474 (2011)

    Article  Google Scholar 

  10. Liu, H., Abraham, A., Snášel, V., McLoone, S.: Swarm scheduling approaches for work-flow applications with security constraints in distributed data-intensive computing environments. Inf. Sci. 192, 228–243 (2012)

    Article  Google Scholar 

  11. Pintea, C.-M., Pop, P.C.: An improved hybrid algorithm for capacitated fixed-charge transportation problem. Logic J. IGPL 23(3), 369–378 (2015)

    Article  MathSciNet  Google Scholar 

  12. Pintea, C.-M., Sitar, C.P., Hajdu-Macelaru, M., Petrica, P.: A hybrid classical approach to a fixed-charged transportation problem. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 557–566. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28942-2_50

    Chapter  Google Scholar 

  13. Pop, P.C., et al.: An efficient reverse distribution system for solving sustainable supply chain network design problem. J. Appl. Logic 13(2), 105–113 (2015)

    Article  Google Scholar 

  14. Pop, P.C., et al.: A hybrid based genetic algorithm for solving a capacitated fixed-charged transportation problem. Carpathian J. Math. 32(2), 225–232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rice, J.B., Caniato, F.: Building a secure and resilient supply network. Supply Chain Manag. Rev. 7(5), 22–30 (2003)

    Google Scholar 

  16. Iantovics, B., Crainicu, B.: A distributed security approach for intelligent mobile multiagent systems. Stud. Comput. Intell. 486, 175–189 (2014)

    Article  Google Scholar 

  17. Lee, H.L., Wolfe, M.: Supply chain security without tears. Supply Chain Manag. Rev. 7(3), 12–20 (2003)

    Google Scholar 

  18. Matei, O.: Evolutionary Computation: Principles and Practices. Risoprint, London (2008)

    Google Scholar 

  19. Mes, M., et al.: Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems. Eur. J. Oper. Res. 181(1), 59–75 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nechita, E., et al.: Cooperative ant colonies for vehicle routing problem with time windows. A case study in the distribution of dietary products. WMSCI 5, 48–52 (2008)

    Google Scholar 

  21. Sivadasan, S., et al.: Advances on measuring the operational complexity of supplier–customer systems. Eur. J. Oper. Res. 171(1), 208–226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, S., Hwang, K., Zhou, R., Kwok, Y.: Trusted P2P transactions with fuzzy reputation aggregation. IEEE Internet Comput. 9(6), 24–34 (2005)

    Article  Google Scholar 

  23. Song, S., Kwok, Y., Hwang, K.: Security-driven heuristics and a fast genetic algorithm for trusted grid job scheduling. Int. Parallel Distrib. Process. IEEE CS 65, 4–12 (2005)

    Google Scholar 

  24. Song, S., Hwang, K., Kwok, Y., et al.: Risk-resilient heuristics and genetic algorithms for security-assured grid job scheduling. IEEE Trans. Comp. 55(6), 703 (2006)

    Article  Google Scholar 

  25. Sun, M., et al.: A tabu search heuristic procedure for the fixed charge transportation problem. Eur. J. Oper. Res. 106(2), 441–456 (1998)

    Article  MATH  Google Scholar 

  26. Venugopal, S., Buyya, R.: A deadline and budget constrained scheduling algorithm for escience applications on data grids. In: Hobbs, M., Goscinski, A.M., Zhou, W. (eds.) ICA3PP 2005. LNCS, vol. 3719, pp. 60–72. Springer, Heidelberg (2005). doi:10.1007/11564621_7

    Chapter  Google Scholar 

  27. Vescan, A., Motogna, S.: Overview and architecture of a component modeling tool. Creative Math. Inf. 16, 159–165 (2007)

    MATH  Google Scholar 

  28. Li, X., Chandra, C.: Toward a secure supply chain: a system’s perspective. Hum. Syst. Manag. 27(1), 73–86 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The study was conducted under the auspices of the IEEE-CIS Interdisciplinary Emergent Technologies TF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camelia-M. Pintea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pintea, CM., Calinescu, A., Pop, P.C., Sabo, C. (2017). Towards a Secure Two-Stage Supply Chain Network: A Transportation-Cost Approach. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47364-2_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47363-5

  • Online ISBN: 978-3-319-47364-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics