Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems | SpringerLink
Skip to main content

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques (ISoLA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9952))

Included in the following conference series:

Abstract

Scheduling and control of Cyber-Physical Systems (CPS) are becoming increasingly complex, requiring the development of new techniques that can effectively lead to their advancement. This is also the case for failure detection and scheduling component replacements. The large number of factors that influence how failures occur during operation of a CPS may result in maintenance policies that are time-monitoring based, which can lead to suboptimal scheduling of maintenance. This paper investigates how to improve maintenance scheduling of such complex embedded systems, by means of monitoring in real-time the critical components and dynamically adjusting the optimal time between maintenance actions. The proposed technique relies on machine learning classification models in order to classify component failure cases vs. non-failure cases, and on real-time updating of the maintenance policy of the sub-system in question. The results obtained from the domain of printers show that a model that is responsive to the environmental changes can enable consumable savings, while keeping the same product quality, and thus be relevant for industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Experimental data available upon request.

References

  1. Abdeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor. Comput. Sci. 354(2), 272–300 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arab, A., Ismail, N., Lee, L.S.: Maintenance scheduling incorporating dynamics of production system and real-time information from workstations. J. Intell. Manuf. 24(4), 695–705 (2013)

    Article  Google Scholar 

  4. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems III: Verification and Control. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)

    Google Scholar 

  7. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted timed automata. Inf. Process. Lett. 98(5), 188–194 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bulychev, P., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A., Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata. arXiv preprint arXiv:1207.1272 (2012)

  9. Burns, A.: How to verify a safe real-time system: the application of model checking and timed automata to the production cell case study. Real-Time Syst. 24(2), 135–151 (2003)

    Article  MATH  Google Scholar 

  10. Butler, K.L.: An expert system based framework for an incipient failure detection and predictive maintenance system. In: Proceeding of the International Conference on Intelligent Systems Applications to Power Systems, Orlando, Florida, USA, pp. 321–326 (1996)

    Google Scholar 

  11. Cardenas, A.A., Amin, S., Sastry, S.: Secure control: towards survivable cyber-physical systems. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops, pp. 495–500 (2008)

    Google Scholar 

  12. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proc. IEEE 100(1), 13–28 (2012)

    Article  Google Scholar 

  13. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  14. Fumeo, E., Oneto, L., Anguita, D.: Condition based maintenance in railway transportation systems based on big data streaming analysis. Procedia Comput. Sci. 53, 437–446 (2015)

    Article  Google Scholar 

  15. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 379–395. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Gross, P., Boulanger, A., Arias, M., Waltz, D.L., Long, P.M., Lawson, C., Anderson, R., Koenig, M., Mastrocinque, M., Fairechio, W., et al.: Predicting electricity distribution feeder failures using machine learning susceptibility analysis. In: Proceedings of the 21st National Conference on Artificial Intelligence, Boston, Massachusetts, USA, vol. 21, pp. 1705–1711 (2006)

    Google Scholar 

  17. Hashemian, H.M., Bean, W.C.: State-of-the-art predictive maintenance techniques. IEEE Trans. Instrum. Meas. 60(10), 3480–3492 (2011)

    Article  Google Scholar 

  18. Kaiser, K.A., Gebraeel, N.Z.: Predictive maintenance management using sensor-based degradation models. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 39(4), 840–849 (2009)

    Article  Google Scholar 

  19. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of the 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing, Orlando, Florida, USA, pp. 363–369 (2008)

    Google Scholar 

  20. Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., Hampapur, A.: Improving rail network velocity: a machine learning approach to predictive maintenance. Transp. Res. Part C: Emerg. Technol. 45, 17–26 (2014)

    Article  Google Scholar 

  21. Maier, A., Niggemann, O., Eickmeyer, J.: On the learning of timing behavior for anomaly detection in cyber-physical production systems. In: Proceedings of the 26th International Workshop on Principles of Diagnosis, Paris, France, pp. 217–224 (2015)

    Google Scholar 

  22. Maier, A.: Online passive learning of timed automata for cyber-physical production systems. In: Proceedings of the 12th IEEE International Conference on Industrial Informatics, Porto Alegre, Brazil, pp. 60–66 (2014)

    Google Scholar 

  23. Niggemann, O., Biswas, G., Kinnebrew, J.S., Khorasgani, H., Volgmann, S., Bunte, A.: Data-driven monitoring of cyber-physical systems leveraging on big data and the internet-of-things for diagnosis and control. In: Proceedings of the 26th International Workshop on Principles of Diagnosis, Paris, France, pp. 185–192 (2015)

    Google Scholar 

  24. Nowaczyk, S., Prytz, R., Rögnvaldsson, T., Byttner, S.: Towards a machine learning algorithm for predicting truck compressor failures using logged vehicle data. In: Proceedings of the 12th Scandinavian Conference on Artificial Intelligence, Aalborg, Denmark, pp. 205–214 (2013)

    Google Scholar 

  25. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (2014)

    Google Scholar 

  26. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Simeu-Abazi, Z., Bouredji, Z.: Monitoring and predictive maintenance: modeling and analyse of fault latency. Comput. Ind. 57(6), 504–515 (2006)

    Article  Google Scholar 

  28. Verwer, S., Weerdt, M., Witteveen, C.: Efficiently identifying deterministic real-time automata from labeled data. Mach. Learn. 86(3), 295–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Witten, I.H., Frank, E., Trigg, L.E., Hall, M.A., Holmes, G., Cunningham, S.J.: Weka: practical machine learning tools and techniques with Java implementations (1999)

    Google Scholar 

Download references

Acknowledgments

Thanks to Lou Somers and Patrick Vestjens for providing industrial datasets as well as required expertise related to the case of study. This research is supported by the Dutch Technology Foundation STW under the Robust CPS program (project 12693).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexis Linard or Marcos L. P. Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Linard, A., Bueno, M.L.P. (2016). Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Foundational Techniques. ISoLA 2016. Lecture Notes in Computer Science(), vol 9952. Springer, Cham. https://doi.org/10.1007/978-3-319-47166-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47166-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47165-5

  • Online ISBN: 978-3-319-47166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics