Abstract
Modeling user behavior and latent preference implied in rating data are the basis of personalized information services. In this paper, we adopt a latent variable to describe user preference and Bayesian network (BN) with a latent variable as the framework for representing the relationships among the observed and the latent variables, and define user preference BN (abbreviated as UPBN). To construct UPBN effectively, we first give the property and initial structure constraint that enable conditional probability distributions (CPDs) related to the latent variable to fit the given data set by the Expectation-Maximization (EM) algorithm. Then, we give the EM-based algorithm for constraint-based maximum likelihood estimation of parameters to learn UPBN’s CPDs from the incomplete data w.r.t. the latent variable. Following, we give the algorithm to learn the UPBN’s graphical structure by applying the structural EM (SEM) algorithm and the Bayesian Information Criteria (BIC). Experimental results show the effectiveness and efficiency of our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Netica Application (2016). http://www.norsys.com/netica.html
MovieLens Dataset (2016). http://grouplens.org/datasets/movielens/1m
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Breese, J., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI 1998, pp. 43–52. Morgan Kaufmann (1998)
Dempster, A., Laird, N., Rubin, D.: Maximum-likelihood from Incomplete Data via the EM algorithm. J. Royal Stat. Soc. 39(1), 1–38 (1977)
Friedman, N.: Learning belief networks in the presence of missing values and hidden variables. In: ICML 1997, pp. 452–459. ACM (1997)
Friedman, N.: The Bayesian structural EM algorithm. In: UAI 1998, pp. 129–138. Morgan Kaufmann (1998)
Elidan, G., Lotner, N., Friedman, N., Koller, D.: Discovering Hidden variables: a structure-based approach. In: NIPS 2000, pp. 479–485 (2000)
Huang, Y., Bian, L.: A bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the internet. Expert Syst. Appl. 36(1), 933–943 (2009)
Huete, J., Campos, L., Fernandez-luna, J.M.: Using structural content information for learning user profiles. In: SIGIR 2007, pp. 38–45 (2007)
Kim, J., Jun, C.: Ranking evaluation of institutions based on a bayesian network having a latent variable. Knowl. Based Syst. 50, 87–99 (2013)
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)
Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)
Liu, T., Zhang, N.L., Chen, L., Liu, A.H., Poon, L., Wang, Y.: Greedy learning of latent tree models for multidimensional clustering. Mach. Learn. 98(1–2), 301–330 (2015)
Pearl, J.: Fusion, propagation, and structuring in belief networks. Artif. Intell. 29(3), 241–288 (1986)
Salakhutdinov, R., Mnih, A.: Probabilistic Matrix Factorization. In: NIPS 2007, pp. 1257–1264 (2007)
Tan, F., Li, L., Zhang, Z., Guo, Y.: A multi-attribute probabilistic matrix factorization model for personalized recommendation. In: Dong, X.L., Yu, X., Li, J., Sun, Y. (eds.) WAIM 2015. LNCS, vol. 9098, pp. 535–539. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21042-1_57
Yin, H., Cui, B., Chen, L., Hu, Z., Huang, Z.: A Temporal context-aware model for user behavior modeling in social media systems. In: SIGMOD 2014, pp. 1543–1554. ACM (2014)
Yu, K., Zhang, B., Zhu, H., Cao, H., Tian, J.: Towards personalized context-aware recommendation by mining context logs through topic models. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012. LNCS (LNAI), vol. 7301, pp. 431–443. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30217-6_36
Yue, K., Fang, Q., Wang, X., Li, J., Liu, W.: A parallel and incremental approach for data-intensive learning of bayesian networks. IEEE Trans. Cybern. 45(12), 2890–2904 (2015)
Zhao, Z., Cheng, Z., Hong, L., Chi, E.H.: Improving user topic interest profiles by behavior factorization. In: WWW 2015, pp. 1406–1416. ACM (2015)
Acknowledgements
This paper was supported by the National Natural Science Foundation of China (Nos. 61472345, 61562090, 61462056, 61402398), Natural Science Foundation of Yunnan Province (Nos. 2014FA023, 2013FB009, 2013FB010), Program for Innovative Research Team in Yunnan University (No. XT412011), and Program for Excellent Young Talents of Yunnan University (No. XT412003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Gao, R., Yue, K., Wu, H., Zhang, B., Fu, X. (2016). Modeling User Preference from Rating Data Based on the Bayesian Network with a Latent Variable. In: Song, S., Tong, Y. (eds) Web-Age Information Management. WAIM 2016. Lecture Notes in Computer Science(), vol 9998. Springer, Cham. https://doi.org/10.1007/978-3-319-47121-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-47121-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47120-4
Online ISBN: 978-3-319-47121-1
eBook Packages: Computer ScienceComputer Science (R0)