Abstract
In order to support navigation, gesture detection, and augmented reality, modern smartphones contain inertial measurement units (IMU) consisting of accelerometers and gyroscopes. Although the accuracy of these sensors directly affects the soundness of mobile applications, no standardized tests exist to verify the correctness of the retrieved sensor data. For this purpose, we present a novel benchmark, which utilizes the camera of the phone as a reference to estimate the quality of its sensor data fusion. Our experiments do not require special equipment and reveal significant discrepancies between different phone models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mladenov, M., Mock, M.: A step counter service for Java-enabled devices using a built-in accelerometer. In: COMSWARE 2009. CAMS (2009)
Serra, A., Carboni, D., Marotto, V.: Indoor pedestrian navigation system using a modern smartphone. In: MobileHCI 2010 (2010)
Schmalstieg, D., Wagner, D.: Experiences with handheld augmented reality. In: Mixed and Augmented Reality, ISMAR 2007 (2007)
Mulloni, A., Seichter, H., Schmalstieg, D.: Handheld augmented reality indoor navigation with activity-based instructions. In: MobileHCI 2011 (2011)
Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: accelerometer-based personalized gesture recognition and its applications. Pervasive Mob. Comput. 5(6), 657–675 (2009)
Woodman, O.J.: An introduction to inertial navigation. University of Cambridge, Computer Laboratory, Technical report UCAMCL-TR-696, vol. 26(6), pp. 561–575 (2007)
Kim, A., Golnaraghi, M.: Initial calibration of an inertial measurement unit using an optical position tracking system. In: PLANS 2004 (2004)
Lobo, J., Dias, J.: Relative pose calibration between visual and inertial sensors. Int. J. Robot. Res. 26(6), 561–575 (2007)
Panahandeh, G., Jansson, M.: IMU-camera self-calibration using planar mirror reflection. In: Indoor Positioning and Indoor Navigation (IPIN) (2011)
Oberkampf, D., DeMenthon, D., Davis, L.: Iterative pose estimation using coplanar points. In: Computer Vision and Pattern Recognition (1993)
Gao, X.S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete solutionclassification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)
Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate o(n) solution to the PnP problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media Inc., Sebastopol (2008)
Zhang, X., Fronz, S., Navab, N.: Visual marker detection, decoding in AR systems: a comparative study. In: Mixed and Augmented Reality. ISMAR (2002)
Fiala, M., Shu, C.: Self-identifying patterns for plane-based camera calibration. Mach. Vis. Appl. 19(4), 209–216 (2008)
Kelly, J., Sukhatme, G.S.: Visual-inertial sensor fusion: localization, mapping and sensor-to-sensor self-calibration. Int. J. Robot. Res. 30, 56–79 (2011)
Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: IWAR 1999 (1999)
Hinckley, K., Sinclair, M., Hanson, E., Szeliski, R., Conway, M.: The videomouse: a camera-based multidegree-of-freedom input device. In: ACM UIST 1999 (1999)
Liu, Y., Yang, J., Liu, M.: Recognition of QR code with mobile phones. In: 2008 Chinese Control and Decision Conference, CCDC 2008, July 2008
Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Middendorf, L., Dorsch, R., Bichler, R., Strohrmann, C., Haubelt, C. (2016). A Mobile Camera-Based Evaluation Method of Inertial Measurement Units on Smartphones. In: Mandler, B., et al. Internet of Things. IoT Infrastructures. IoT360 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-47075-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-47075-7_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47074-0
Online ISBN: 978-3-319-47075-7
eBook Packages: Computer ScienceComputer Science (R0)