A Mobile Camera-Based Evaluation Method of Inertial Measurement Units on Smartphones | SpringerLink
Skip to main content

A Mobile Camera-Based Evaluation Method of Inertial Measurement Units on Smartphones

  • Conference paper
  • First Online:
Internet of Things. IoT Infrastructures (IoT360 2015)

Abstract

In order to support navigation, gesture detection, and augmented reality, modern smartphones contain inertial measurement units (IMU) consisting of accelerometers and gyroscopes. Although the accuracy of these sensors directly affects the soundness of mobile applications, no standardized tests exist to verify the correctness of the retrieved sensor data. For this purpose, we present a novel benchmark, which utilizes the camera of the phone as a reference to estimate the quality of its sensor data fusion. Our experiments do not require special equipment and reveal significant discrepancies between different phone models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mladenov, M., Mock, M.: A step counter service for Java-enabled devices using a built-in accelerometer. In: COMSWARE 2009. CAMS (2009)

    Google Scholar 

  2. Serra, A., Carboni, D., Marotto, V.: Indoor pedestrian navigation system using a modern smartphone. In: MobileHCI 2010 (2010)

    Google Scholar 

  3. Schmalstieg, D., Wagner, D.: Experiences with handheld augmented reality. In: Mixed and Augmented Reality, ISMAR 2007 (2007)

    Google Scholar 

  4. Mulloni, A., Seichter, H., Schmalstieg, D.: Handheld augmented reality indoor navigation with activity-based instructions. In: MobileHCI 2011 (2011)

    Google Scholar 

  5. Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: accelerometer-based personalized gesture recognition and its applications. Pervasive Mob. Comput. 5(6), 657–675 (2009)

    Article  Google Scholar 

  6. Woodman, O.J.: An introduction to inertial navigation. University of Cambridge, Computer Laboratory, Technical report UCAMCL-TR-696, vol. 26(6), pp. 561–575 (2007)

    Google Scholar 

  7. Kim, A., Golnaraghi, M.: Initial calibration of an inertial measurement unit using an optical position tracking system. In: PLANS 2004 (2004)

    Google Scholar 

  8. Lobo, J., Dias, J.: Relative pose calibration between visual and inertial sensors. Int. J. Robot. Res. 26(6), 561–575 (2007)

    Article  Google Scholar 

  9. Panahandeh, G., Jansson, M.: IMU-camera self-calibration using planar mirror reflection. In: Indoor Positioning and Indoor Navigation (IPIN) (2011)

    Google Scholar 

  10. Oberkampf, D., DeMenthon, D., Davis, L.: Iterative pose estimation using coplanar points. In: Computer Vision and Pattern Recognition (1993)

    Google Scholar 

  11. Gao, X.S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete solutionclassification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)

    Article  Google Scholar 

  12. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate o(n) solution to the PnP problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)

    Article  Google Scholar 

  13. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  14. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media Inc., Sebastopol (2008)

    Google Scholar 

  15. Zhang, X., Fronz, S., Navab, N.: Visual marker detection, decoding in AR systems: a comparative study. In: Mixed and Augmented Reality. ISMAR (2002)

    Google Scholar 

  16. Fiala, M., Shu, C.: Self-identifying patterns for plane-based camera calibration. Mach. Vis. Appl. 19(4), 209–216 (2008)

    Article  Google Scholar 

  17. Kelly, J., Sukhatme, G.S.: Visual-inertial sensor fusion: localization, mapping and sensor-to-sensor self-calibration. Int. J. Robot. Res. 30, 56–79 (2011)

    Article  Google Scholar 

  18. Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: IWAR 1999 (1999)

    Google Scholar 

  19. Hinckley, K., Sinclair, M., Hanson, E., Szeliski, R., Conway, M.: The videomouse: a camera-based multidegree-of-freedom input device. In: ACM UIST 1999 (1999)

    Google Scholar 

  20. Liu, Y., Yang, J., Liu, M.: Recognition of QR code with mobile phones. In: 2008 Chinese Control and Decision Conference, CCDC 2008, July 2008

    Google Scholar 

  21. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Middendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Middendorf, L., Dorsch, R., Bichler, R., Strohrmann, C., Haubelt, C. (2016). A Mobile Camera-Based Evaluation Method of Inertial Measurement Units on Smartphones. In: Mandler, B., et al. Internet of Things. IoT Infrastructures. IoT360 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-47075-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47075-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47074-0

  • Online ISBN: 978-3-319-47075-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics