Graceful Degradation Under Noise on Brain Inspired Robot Controllers | SpringerLink
Skip to main content

Graceful Degradation Under Noise on Brain Inspired Robot Controllers

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9947))

Included in the following conference series:

Abstract

How can we build robot controllers that are able to work under harsh conditions, but without experiencing catastrophic failures? As seen on the recent Fukushima’s nuclear disaster, standard robots break down when exposed to high radiation environments. Here we present the results from two arrangements of Spiking Neural Networks, based on the Liquid State Machine (LSM) framework, that were able to gracefully degrade under the effects of a noisy current injected directly into each simulated neuron. These noisy currents could be seen, in a simplified way, as the consequences of exposition to non-destructive radiation. The results show that not only can the systems withstand noise, but one of the configurations, the Modular Parallel LSM, actually improved its results, in a certain range, when the noise levels were increased. Also, the robot controllers implemented in this work are suitable to run on a modern, power efficient neuromorphic hardware such as SpiNNaker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code available at github.com/ricardodeazambuja/IJCNN2016.

References

  1. de Azambuja, R., Cangelosi, A., Adams, S.: Diverse, noisy and parallel: a new spiking neural network approach for humanoid robot control. In: 2016 International Joint Conference on Neural Networks (IJCNN). p. In Press (In Press)

    Google Scholar 

  2. Benito-Len, J., Louis, E.D.: Essential tremor: emerging views of a common disorder. Nat. Clin.l Pract. Neurol. 2(12), 666–678 (2006)

    Article  Google Scholar 

  3. Chowdhury, F.K., Choe, D., Jevremovic, T., Tabib-Azar, M.: Design of MEMS based XOR and AND gates for rad-hard and very low power LSI mechanical processors. In: 2011 IEEE Sensors, pp. 762–765, October 2011

    Google Scholar 

  4. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Google Scholar 

  5. Furber, S.B., Lester, D.R., Plana, L.A., Garside, J.D., Painkras, E., Temple, S., Brown, A.D.: Overview of the SpiNNaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2013)

    Article  MathSciNet  Google Scholar 

  6. Herculano-Houzel, S.: Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS One 6(3), e17514 (2011)

    Article  Google Scholar 

  7. Indiveri, G., Linares-Barranco, B., Hamilton, T.J., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Hfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saïghi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic silicon neuron circuits. Neuromorphic Eng. 5, 73 (2011)

    Google Scholar 

  8. Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neural Comput. 17(8), 1715–1738 (2005)

    Article  MATH  Google Scholar 

  9. Kandil, M.R., Tohamy, S.A., Abdel Fattah, M., Ahmed, H.N., Farwiez, H.M.: Prevalence of chorea, dystonia and athetosis in assiut, egypt: a clinical and epidemiological study. Neuroepidemiology 13(5), 202–210 (1994)

    Article  Google Scholar 

  10. Kaul, H., Anders, M., Hsu, S., Agarwal, A., Krishnamurthy, R., Borkar, S.: Near-threshold voltage (NTV) design: opportunities and challenges. In: Proceedings of the 49th Annual Design Automation Conference, pp. 1153–1158. ACM (2012)

    Google Scholar 

  11. Kerns, S.E., Shafer, B.D., van Vonno, N., Barber, F.E.: The design of radiation-hardened ICs for space: a compendium of approaches. Proc. IEEE 76(11), 1470–1509 (1988)

    Article  Google Scholar 

  12. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R.S., Yelick, K.: ExaScale computing study: technology challenges in achieving exascale systems. Technical report University of Notre Dame, September 2008

    Google Scholar 

  13. Maass, W.: Noise as a resource for computation and learning in networks of spiking neurons. Proc. IEEE 102(5), 860–880 (2014)

    Article  Google Scholar 

  14. Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural circuits. PLoS Comput. Biol. 3(1), e165 (2007)

    Article  MathSciNet  Google Scholar 

  15. Maass, W., Natschlger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  16. Rogers, T.T., McClelland, J.L.: Parallel distributed processing at 25: further explorations in the microstructure of cognition. Cogn. Sci. 38(6), 1024–1077 (2014)

    Article  Google Scholar 

  17. Rohmer, E., Singh, S.P., Freese, M.: V-REP: A versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326. IEEE (2013)

    Google Scholar 

  18. Roy, D.S., Arons, A., Mitchell, T.I., Pignatelli, M., Ryan, T.J., Tonegawa, S.: Memory retrieval by activating engram cells in mouse models of early Alzheimers disease. Nature 531(7595), 508–512 (2016)

    Article  Google Scholar 

  19. Ryan, T.J., Roy, D.S., Pignatelli, M., Arons, A., Tonegawa, S.: Engram cells retain memory under retrograde amnesia. Science 348(6238), 1007–1013 (2015)

    Article  Google Scholar 

  20. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  21. Schemmel, J., Brderle, D., Grbl, A., Hock, M., Meier, K., Millner, S.: A wafer-scale neuromorphic hardware system for large-scale neural modeling. In: Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS 2010), pp. 1947–1950 (2010)

    Google Scholar 

  22. Vertrees, S.M., Berman, S.A.: Chorea in adults: background, pathophysiology, epidemiology. http://emedicine.medscape.com/article/1149854-overview. Accessed: 19 Apr 2016

  23. Waldrop, M.M.: More than moore. Nature 530(7589), 114 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work was in part supported by the CAPES Foundation, Ministry of Education of Brazil (scholarship BEX 1084/13-5), CNPq Brazil (scholarship 232590/2014-1) and UK EPSRC project BABEL (EP/J004561/1 and EP/J00457X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo de Azambuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

de Azambuja, R., Klein, F.B., Stoelen, M.F., Adams, S.V., Cangelosi, A. (2016). Graceful Degradation Under Noise on Brain Inspired Robot Controllers. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9947. Springer, Cham. https://doi.org/10.1007/978-3-319-46687-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46687-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46686-6

  • Online ISBN: 978-3-319-46687-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics