Abstract
Laws and regulations impact the design of software systems, as they introduce new requirements and constrain existing ones. The analysis of a software system and the degree to which it complies with applicable laws can be greatly facilitated by models of applicable laws. However, laws are inherently voluminous, often consisting of hundreds of pages of text, and so are their models, consisting of thousands of concepts and relationships. This paper studies the possibility of building models of law semi-automatically by using the NómosT tool. Specifically, we present the NómosT architecture and the process by which a user constructs a model of law semi-automatically, by first annotating the text of a law and then generating from it a model. We then evaluate the performance of the tool relative to building a model of a piece of law manually. In addition, we offer statistics on the quality of the final output that suggest that tool supported generation of models of law reduces substantially human effort without affecting the quality of the output.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The tool is available at http://www.fastsas.com/.
- 2.
Section 37 has 507 words, 14 sentences, Section 43 has 438 words, 12 sentences, Section 54 has 343 words, 10 sentences and Section 78 has 373 words, 13 sentences.
- 3.
Generated models are available at http://www.fastsas.com/Experiments/Ita.
- 4.
Section 13 has 303 words with 12 sentences, Section 14 has 572 words, 21 sentences, Section 41 has 264 words, 12 sentences and Section 42 has 249 words, 13 sentences.
- 5.
Generated models are available at http://www.fastsas.com/Experiments/Ger.
References
Biagioli, C., Francesconi, E., Passerini, A., Montemagni, S., Soria, C.: Automatic semantics extraction in law documents. In: 10th International Conference on Artificial Intelligence and Law, ICAIL 2005, pp. 133–140. ACM, New York (2005). http://doi.acm.org/10.1145/1165485.1165506
Boella, G., di Caro, L., Humphreys, L., Robaldo, L., van der Torre, L.: NLP challenges for eunomos a tool to build and manage legal knowledge. In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC 2012). ELRA, Istanbul, May 2012
Breaux, T.D., Anton, A.I.: A systematic method for acquiring regulatory requirements: a frame-based approach. In: RHAS-6: Proceedings of the 6th International Workshop on Requirements for High Assurance Systems (RHAS-6). Software Engineering Institute (SEI), Pittsburgh, September 2007
Breaux, T.D.: Legal requirements acquisition for the specification of legally compliant information systems. Ph.D. thesis, North Carolina State University (2009)
Dozier, C., Kondadadi, R., Light, M., Vachher, A., Veeramachaneni, S., Wudali, R.: Named entity recognition and resolution in legal text. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS (LNAI), vol. 6036, pp. 27–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12837-0_2
Ghanavati, S., Amyot, D., Peyton, L.: Compliance analysis based on a goal-oriented requirement language evaluation methodology. In: 17th IEEE International Requirements Engineering Conference, RE 2009, Atlanta, Georgia, USA, 31 August–4 September 2009, pp. 133–142 (2009). http://dx.doi.org/10.1109/RE.2009.42
Hashmi, M.: A methodology for extracting legal norms from regulatory documents. In: 2015 IEEE 19th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 41–50, September 2015
Ingolfo, S., Siena, A., Mylopoulos, J., Susi, A., Perini, A.: Arguing regulatory compliance of software requirements. Data Knowl. Eng. 87, 279–296 (2013). http://www.sciencedirect.com/science/article/pii/S0169023X1200105X
Kiyavitskaya, N., Zeni, N., Mich, L., Mylopoulos, J.: Experimenting with linguistic tools for conceptual modelling: quality of the models and critical features. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 135–146. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27779-8_12
Lesmo, L., Mazzei, A., Palmirani, M., Radicioni, D.: Tulsi: an NLP system for extracting legal modificatory provisions. Artif. Intell. Law 21(2), 139–172 (2013). http://dx.doi.org/10.1007/s10506-012-9127-6
Massey, A.K.: Legal requirements metrics for compliance analysis. Ph.D. thesis, North Carolina State University (2012)
Mich, L.: NL-OOPS: from natural language to object oriented requirements using the natural language processing system LOLITA. Nat. Lang. Eng. 2(2), 161–187 (1996). http://dx.doi.org/10.1017/S1351324996001337
Moens, M., Uyttendaele, C., Dumortier, J.: Information extraction from legal texts: the potential of discourse analysis. Int. J. Hum. Comput. Stud. 51(6), 1155–1171 (1999). http://dx.doi.org/10.1006/ijhc.1999.0296
Rolland, C., Proix, C.: A natural language approach for requirements engineering. In: Loucopoulos, P. (ed.) CAiSE 1992. LNCS, vol. 593, pp. 257–277. Springer, Heidelberg (1992). doi:10.1007/BFb0035136
Siena, A., Jureta, I., Ingolfo, S., Susi, A., Perini, A., Mylopoulos, J.: Capturing variability of law with Nómos 2. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 383–396. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34002-4_30
Zeni, N., Kiyavitskaya, N., Mich, L., Cordy, J., Mylopoulos, J.: GaiusT: supporting the extraction of rights and obligations for regulatory compliance. Requir. Eng. 20, 1–22 (2013). http://dx.doi.org/10.1007/s00766-013-0181-8
Acknowledgment
This research has been partially supported by the ERC advanced grant 267856 ‘Lucretius: Foundations for Software Evolution’.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Zeni, N., Seid, E.A., Engiel, P., Ingolfo, S., Mylopoulos, J. (2016). Building Large Models of Law with NómosT. In: Comyn-Wattiau, I., Tanaka, K., Song, IY., Yamamoto, S., Saeki, M. (eds) Conceptual Modeling. ER 2016. Lecture Notes in Computer Science(), vol 9974. Springer, Cham. https://doi.org/10.1007/978-3-319-46397-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-46397-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46396-4
Online ISBN: 978-3-319-46397-1
eBook Packages: Computer ScienceComputer Science (R0)