Semi-supervised Learning Approach for Ontology Mapping Problem | SpringerLink
Skip to main content

Semi-supervised Learning Approach for Ontology Mapping Problem

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 639))

Included in the following conference series:

Abstract

The evolution of the Semantic Web depends on the growing number of ontologies it comprises. However, all ontologies have differences in structure and content because there is no unified standard for their design. To ensure interoperability and fluent information exchange, the correspondences between entities of different ontologies must be found and mapped. A lot of methods have already been proposed for matching heterogeneous ontologies, but they still have many shortcomings and require improvements. This paper suggests a novel semi-supervised machine learning method, which solves ontology mapping task as a classification problem with training set, comprised only of labeled positive examples. Negative examples are generated artificially using an entropy measure in order to build a more accurate Naive Bayesian classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holzschlag, M.E.: 250 HTML and Web Design Secrets. Wiley, Indianapolis (2004)

    Google Scholar 

  2. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. The MIT Press, Cambridge (2008)

    Google Scholar 

  3. Passin, T.B.: Explorer’s Guide to the Semantic Web. Manning, Greenwich (2004)

    Google Scholar 

  4. Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the semantic web. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 228–248. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Antoniou, G., van Harmelen, F.: OWL: web ontology language. In: Handbook on Ontologies, pp. 91–110 (2009)

    Google Scholar 

  6. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  7. Otero-Cerdeira, L., Rodriguez-Martinez, F.J., Gomez-Rodriguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42, 949–971 (2015)

    Article  Google Scholar 

  8. Euzenat, J., Shvaiko, P.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25, 158–176 (2013)

    Article  Google Scholar 

  9. Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org/

  10. Liu, L., Yang, F., Zhang, P., Wu, J.Y., Hu, L.: SVM-based ontology mapping approach. Int. J. Autom. Comput. 9, 306–314 (2012)

    Article  Google Scholar 

  11. Kubat, M.: An Introduction to Machine Learning. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  12. Li, X.L., Liu, B., Ng, S.K.: Learning to identify unexpected instances in the test set. In: IJCAI 2007 Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp. 2802–2807. Morgan Kaufmann, San Francisco (2007)

    Google Scholar 

  13. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. ACM SIGMOD Rec. 35, 34–41 (2006)

    Article  Google Scholar 

  14. Kalfoglou, Y.: Ontology mapping: the state of the art. Knowl. Eng. Rev. 18, 1–31 (2003)

    Article  Google Scholar 

  15. Thanh Le, B., Dieng-Kuntz, R., Gandon, F.: An ontology matching problems for building a corporate Semantic Web in a multi-communities organization. In: 6th International Conference on Enterprise Information Systems (ICEIS), pp. 236–243. Springer, Heidelberg (2004)

    Google Scholar 

  16. Doan, A., Madhavan, J., Domingos, P., Halevy, A.Y: Ontology matching: a machine learning approach. In: Handbook on Ontologies, pp. 385–404 (2004)

    Google Scholar 

  17. Nezdali, A.H., Shadgar, B., Osareh, A.: Ontology alignment using machine learning techniques. Int. J. Comput. Sci. Inf. Technol. 3, 139–150 (2011)

    Google Scholar 

  18. Mao, M., Peng, Y., Spring, M.: Ontology mapping: as a binary classification problem. In: 4th International Conference on Semantics, Knowledge and Grid 2008 (SKG 2008), pp. 20–25. IEEE, New York (2008)

    Google Scholar 

  19. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment for OWL-Lite. In: 16th European Conference on Artificial Intelligence (ECAI), pp. 333–337. IOS Press, Amsterdam (2004)

    Google Scholar 

  20. Castano, S., Ferrara, A., Montanelli, S.: Matching ontologies in open networked systems: techniques and applications. In: Spaccapietra, S., Atzeni, P., Chu, W.W., Catarci, T., Sycara, K. (eds.) Journal on Data Semantics V. LNCS, vol. 3870, pp. 25–63. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Daneshpazhouh, A., Sami, A.: Entropy-based outlier detection using semi-supervised approach with few positive examples. Pattern Recogn. Lett. 49, 77–84 (2014)

    Article  Google Scholar 

  22. Zhang, B., Zuo, W.: Reliable negative extracting based on kNN for learning from positive and unlabelled examples. J. Comput. 4, 94–101 (2009)

    Google Scholar 

  23. Li, X., Liu, B.: Learning to classify texts using positive and unlabeled data. In: 18th International Joint Conference on Artificial Intelligence 2003 (IJCAI 2003), pp. 587–592. Morgan Kaufman, San Francisco (2003)

    Google Scholar 

  24. Wang, X., Xu, Z., Sha, C., Ester, M., Zhou, A.: Semi-supervised learning from only positive and unlabeled data using entropy. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 668–679. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Li, X.-L., Liu, B., Ng, S.-K.: Learning to classify documents with only a small positive training set. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 201–213. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Wang, Y., Liu, W., Bell, D.A.: A structure-based similarity spreading approach for ontology matching. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 361–374. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to match ontologies on the Semantic Web. Int. J. Very Large Data Bases (VLDB J.) 12, 303–319 (2003)

    Article  Google Scholar 

  28. Wang, Z.: A semi-supervised learning approach for ontology matching. In: Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., Pan, J.Z. (eds.) CSWS 2014. CCIS, vol. 480, pp. 17–28. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rima Linaburgyte or Rimantas Butleris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Linaburgyte, R., Butleris, R. (2016). Semi-supervised Learning Approach for Ontology Mapping Problem. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-46254-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46254-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46253-0

  • Online ISBN: 978-3-319-46254-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics