Application of Real Ant Colony Optimization Algorithm to Solve Space Fractional Heat Conduction Inverse Problem | SpringerLink
Skip to main content

Application of Real Ant Colony Optimization Algorithm to Solve Space Fractional Heat Conduction Inverse Problem

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 639))

Included in the following conference series:

Abstract

In this paper inverse problem for the space fractional heat conduction equation is investigated. In order to reconstruct the heat transfer coefficient, functional defining error of approximate solution is created. To minimize this functional the Real Ant Colony Optimization algorithm is used. The paper presents examples to illustrate the accuracy and stability of the presented algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hristov, J.: An inverse Stefan problem relevant to boilover: heat balance integral solutions and analysis. Therm. Sci. 11, 141–160 (2007)

    Article  Google Scholar 

  2. Hristov, J.: An approximate solution to the transient space-fractional diffusion equation: integral-balance approach, optimization problems and analyzes. Therm. Sci. (2016). doi:10.2298/TSCI160113075HK

    Google Scholar 

  3. Hristov, J.: Transient heat diffusion with a non-singular fading memory from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20, 765–770 (2016)

    Article  Google Scholar 

  4. Leśniewska, G.R.: Different finite element approaches for inverse heat conduction problems. Inverse Prob. Sci. Eng. 18, 3–17 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Słota, D.: Restoring boundary conditions in the solidification of pure metals. Comput. Struct. 89, 48–54 (2011)

    Article  Google Scholar 

  6. Nowak, I., Smołka, J., Nowak, A.J.: Application of Bezier surfaces to the 3-D inverse geometry problem in continuous casting. Inverse Prob. Sci. Eng. 19, 75–86 (2011)

    Article  MATH  Google Scholar 

  7. Johnsson, B.T., Lesnic, D., Reeve, T.: A meshless regularization method for a two-dimensional two phase linear inverse Stefan problem. Adv. Appl. Math. Mech. 5, 825–845 (2013)

    Article  MathSciNet  Google Scholar 

  8. Hetmaniok, E., Słota, D., Zielonka, A.: Experimental verification of selected artificial intelligence algorithms used for solving the inverse Stefan problem. Numer. Heat Transfer B 66, 343–359 (2014)

    Article  Google Scholar 

  9. Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math Appl. 53, 1492–1501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math Appl. 56, 2371–2381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Murio, D.A., Mejia, C.E.: Generalized time fractional IHCP with Caputo fractional derivatives. J. Phys. Conf. Ser. 135, 012074 (8 pp.) (2008)

    Google Scholar 

  12. Murio, D.A.: Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Prob. Sci. Eng. 17, 229–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miller, L., Yamamoto, M.: Coefficient inverse problem for a fractional diffusion equation. Inverse Probl. 8, 075013 (8 pp.) (2013)

    Google Scholar 

  14. Wei, T., Zhang, Z.Q.: Reconstruction of time-dependent source term in time-fractional diffusion equation. Eng. Anal. Bound. Elem. 37, 23–31 (2013)

    Article  MathSciNet  Google Scholar 

  15. Jin, B., Rundell, W.: An inverse problem for a one-dimensional time-fractional diffusion equation. Inverse Prob. 28, 075010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zheng, G.H., Wei, T.: A new regularization method for the time fractional inverse advection-dispersion problem. SIAM J. Numer. Anal. 49, 1972–1990 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zheng, G.H., Wei, T.: A new regularization method for solving a time-fractional inverse diffusion problem. J. Math. Anal. Appl. 378, 418–431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dou, F.F., Hon, Y.C.: Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 36, 1344–1352 (2012)

    Article  MathSciNet  Google Scholar 

  19. Xiong, X., Zhoua, Q., Hon, Y.C.: An inverse problem for fractional diffusion equation in 2-D dimensional case: stability analysis and regularization. J. Math. Anal. Appl. 393, 185–199 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brociek, R., Słota, D.: Reconstruction of the boundary condition for the heat conduction equation of fractional order. Therm. Sci. 19, 35–42 (2015)

    Article  Google Scholar 

  21. Bondarenko, A.N., Ivaschenko, D.S.: Numerical methods for solving invers problems for time fractional diffusion equation with variable coefficient. J. Inv. Ill-Posed Prob. 17, 419–440 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Murio, D.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math Appl. 56, 1138–1145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Brociek, R.: Implicit finite difference method for time fractional diffusion equations with mixed boundary conditions. Zesz. Nauk. PŚ., Mat. Stosow. 4, 73–87 (2014)

    Google Scholar 

  24. Meerschaert, M.M., Tadjeran, Ch.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meerschaert, M.M., Scheffler, H.P., Tadjeran, Ch.: Finite difference method for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  27. Socha, K., Dorigo, M.: Ant Colony Optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brociek, R., Słota, D.: Application of intelligent algorithm to solve the fractional heat conduction inverse problem. Commun. Comput. Inf. Sci. 538, 356–365 (2015)

    Article  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Słota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brociek, R., Słota, D. (2016). Application of Real Ant Colony Optimization Algorithm to Solve Space Fractional Heat Conduction Inverse Problem. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-46254-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46254-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46253-0

  • Online ISBN: 978-3-319-46254-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics