Abstract
In this paper inverse problem for the space fractional heat conduction equation is investigated. In order to reconstruct the heat transfer coefficient, functional defining error of approximate solution is created. To minimize this functional the Real Ant Colony Optimization algorithm is used. The paper presents examples to illustrate the accuracy and stability of the presented algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hristov, J.: An inverse Stefan problem relevant to boilover: heat balance integral solutions and analysis. Therm. Sci. 11, 141–160 (2007)
Hristov, J.: An approximate solution to the transient space-fractional diffusion equation: integral-balance approach, optimization problems and analyzes. Therm. Sci. (2016). doi:10.2298/TSCI160113075HK
Hristov, J.: Transient heat diffusion with a non-singular fading memory from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20, 765–770 (2016)
Leśniewska, G.R.: Different finite element approaches for inverse heat conduction problems. Inverse Prob. Sci. Eng. 18, 3–17 (2010)
Słota, D.: Restoring boundary conditions in the solidification of pure metals. Comput. Struct. 89, 48–54 (2011)
Nowak, I., Smołka, J., Nowak, A.J.: Application of Bezier surfaces to the 3-D inverse geometry problem in continuous casting. Inverse Prob. Sci. Eng. 19, 75–86 (2011)
Johnsson, B.T., Lesnic, D., Reeve, T.: A meshless regularization method for a two-dimensional two phase linear inverse Stefan problem. Adv. Appl. Math. Mech. 5, 825–845 (2013)
Hetmaniok, E., Słota, D., Zielonka, A.: Experimental verification of selected artificial intelligence algorithms used for solving the inverse Stefan problem. Numer. Heat Transfer B 66, 343–359 (2014)
Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math Appl. 53, 1492–1501 (2007)
Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math Appl. 56, 2371–2381 (2008)
Murio, D.A., Mejia, C.E.: Generalized time fractional IHCP with Caputo fractional derivatives. J. Phys. Conf. Ser. 135, 012074 (8 pp.) (2008)
Murio, D.A.: Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Prob. Sci. Eng. 17, 229–243 (2009)
Miller, L., Yamamoto, M.: Coefficient inverse problem for a fractional diffusion equation. Inverse Probl. 8, 075013 (8 pp.) (2013)
Wei, T., Zhang, Z.Q.: Reconstruction of time-dependent source term in time-fractional diffusion equation. Eng. Anal. Bound. Elem. 37, 23–31 (2013)
Jin, B., Rundell, W.: An inverse problem for a one-dimensional time-fractional diffusion equation. Inverse Prob. 28, 075010 (2012)
Zheng, G.H., Wei, T.: A new regularization method for the time fractional inverse advection-dispersion problem. SIAM J. Numer. Anal. 49, 1972–1990 (2011)
Zheng, G.H., Wei, T.: A new regularization method for solving a time-fractional inverse diffusion problem. J. Math. Anal. Appl. 378, 418–431 (2011)
Dou, F.F., Hon, Y.C.: Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 36, 1344–1352 (2012)
Xiong, X., Zhoua, Q., Hon, Y.C.: An inverse problem for fractional diffusion equation in 2-D dimensional case: stability analysis and regularization. J. Math. Anal. Appl. 393, 185–199 (2012)
Brociek, R., Słota, D.: Reconstruction of the boundary condition for the heat conduction equation of fractional order. Therm. Sci. 19, 35–42 (2015)
Bondarenko, A.N., Ivaschenko, D.S.: Numerical methods for solving invers problems for time fractional diffusion equation with variable coefficient. J. Inv. Ill-Posed Prob. 17, 419–440 (2009)
Murio, D.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math Appl. 56, 1138–1145 (2008)
Brociek, R.: Implicit finite difference method for time fractional diffusion equations with mixed boundary conditions. Zesz. Nauk. PŚ., Mat. Stosow. 4, 73–87 (2014)
Meerschaert, M.M., Tadjeran, Ch.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2006)
Meerschaert, M.M., Scheffler, H.P., Tadjeran, Ch.: Finite difference method for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Socha, K., Dorigo, M.: Ant Colony Optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)
Brociek, R., Słota, D.: Application of intelligent algorithm to solve the fractional heat conduction inverse problem. Commun. Comput. Inf. Sci. 538, 356–365 (2015)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Brociek, R., Słota, D. (2016). Application of Real Ant Colony Optimization Algorithm to Solve Space Fractional Heat Conduction Inverse Problem. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-46254-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-46254-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46253-0
Online ISBN: 978-3-319-46254-7
eBook Packages: Computer ScienceComputer Science (R0)